Green synthesis of silver nanoparticles and their bioactivities
DOI:
https://doi.org/10.5564/mjc.v27i55.4282Keywords:
blueberry, lingonberry, seabuckthorn, aqueous extract, silver nanoparticle, green synthesis, antioxidantAbstract
Silver nanoparticles (AgNPs) were synthesized using aqueous extracts from three Mongolian wild berries: blueberry (Vaccinium uliginosum), lingonberry (Vaccinium vitis-idaea), and sea buckthorn berry (Hippophae rhamnoides). The green synthesized AgNPs were characterized by UV-Vis, FTIR, SEM, and XRD analyses. UV-Vis peaks appeared at 410 nm (blueberry and lingonberry) and 445 nm (sea buckthorn). SEM showed spherical particles with average sizes of 32.36 ± 1.23 nm (Bb-AgNPs), 36.56 ± 7.86 nm (Lg-AgNPs), and 28.70 ± 1.38 nm (Sb-AgNPs). Zeta potential values ranged from −42.8 to −51.1 mV, indicating stable colloids. FTIR confirmed carboxylic acids, phenolics, and alcohols. Total phenolic contents were highest in blueberry extract (8.98 mg GAE/g). Bb-AgNPs showed notably higher antioxidant activity than the original extract. Both lingonberry extract and Lg-AgNPs demonstrated potential for antioxidant supplementation, with Lg-AgNPs also showing antibacterial properties.
Downloads
28
References
1. Li K., C Ma., Jian T., Sun H., Wang L., et al. (2017) Making good use of the byproducts of cultivation: green synthesis and antibacterial effects of silver nanoparticles using the leaf extract of blueberry. J. Food Sci. Technol., 54, 3569-3576. https://doi.org/10.1007/s13197-017-2815-1
2. Nadagouda M.N., Iyanna N., Lalley J., Han C., Dionysiou D.D., et al. (2014) Synthesis of silver and gold nanoparticles using antioxidants from blackberry, blueberry, pomegranate, and turmeric extracts. ACS Sustain. Chem. Eng., 2, 1717-1723. https://doi.org/10.1021/sc500237k
3. Długosz O., Chwastowski J., Banach M. (2020) Hawthorn berries extract for the green synthesis of copper and silver nanoparticles. Chem. Papers, 74, 239-252. https://doi.org/10.1007/s11696-019-00873-z
4. Rizwana H., Alwhibi M.S., Al-Judaie R.A., Aldehaish H.A., Alsaggabi N.S. (2022) Sunlight-mediated green synthesis of silver nanoparticles using the berries of ribes rubrum (red currants): characterisation and evaluation of their antifungal and antibacterial activities. Molecules, 27, 2186. https://doi.org/10.3390/molecules27072186
5. Joshi N., Jain N., Pathak A., Singh J., Prasad R., et al. (2018) Biosynthesis of silver nanoparticles using Carissa carandas berries and its potential antibacterial activities. J. Solgel Sci. Technol., 86, 682–689. https://doi.org/10.1007/s10971-018-4666-2
6. Amin M., Anwar F., Janjua M.R.S.A., Iqbal M.A., Rashid U. (2012) Green synthesis of silver nanoparticles through reduction with Solanum xanthocarpum L. berry extract: Characterization, antimicrobial and urease inhibitory activities against Helicobacter pylori. Int. J. Mol. Sci., 13, 9923–9941. https://doi.org/10.3390/ijms13089923
7. Singh P., Mijakovic I. (2022) Rowan Berries: A potential source for green synthesis of extremely monodisperse gold and silver nanoparticles and their antimicrobial property. Pharmaceutics, 14, 82. https://doi.org/10.3390/pharmaceutics14010082
8. Rizwana H., Khan M., Aldehaish H.A., Adil S.F., Shaik M.R., et al. (2023) Green biosynthesis of silver nanoparticles using Vaccinium oxycoccos (cranberry) extract and evaluation of their biomedical potential. Crystals, 13, 294. https://doi.org/10.3390/cryst13020294
9. Wei S., Wang Y., Tang Z., Hu J., Su R., et al. (2020) A size-controlled green synthesis of silver nanoparticles by using the berry extract of Sea Buckthorn and their biological activities. New J. Chem., 44, 9304-9312. https://doi.org/10.1039/d0nj01335H
10. Nemzer B.V., Al-Taher F., Yashin A., Revelsky I., Yashin Y. (2022) Cranberry: Chemical composition, antioxidant activity and impact on human health. Overview. Molecules, 27, 1-19. https://doi.org/10.3390/molecules27051503
11. Nemzer B.V., Al-Taher F., Yashin A., Revelsky I., Yashin Y. (2022) Cranberry: Chemical composition, antioxidant activity and impact on human health. Overview. Molecules, 27, 1-19. https://doi.org/10.3390/molecules27051503
12. Ștefănescu B. E., Călinoiu L. F., Ranga F., Fetea F., Mocan A., et al. (2020) Chemical composition and biological activities of the nord-west romanian wild bilberry (Vaccinium myrtillus L.) and lingonberry (Vaccinium vitis-idaea L.) leaves. Antioxidants, 6, 495. https//doi.org/10.3390/antiox9060495
13. Bouyahya A., Omari N. E., Hachlafi N. E., Jemly M.E., Hakkour M., et al. (2022) Chemical compounds of berry-derived polyphenols and their effects on gut microbiota, inflammation, and cancer. Molecules, 27, 3286. https//doi.org/10.3390/molecules27103286
14. Zenkova M., Pinchykova J., (2019) Chemical composition of sea-buckthorn and highbush blueberry fruits grown in the Republic of Belarus. J. Food Sc. App. Biotech., 2, 121-129. https://doi.org/10.30721/fsab2019.V2.I2.59
15. Tkacz K., Chmielewska J., Turkiewicz I. P., Nowicka P., Wojdyło A., (2020) Dynamics of changes in organic acids, sugars and phenolic compounds and antioxidant activity of sea buckthorn and sea buckthorn-apple juices during malolactic fermentation. Food Chem, 332, 127382. https//doi.org/10.1016/J.foodchem.2020.127382
16. Zhang A., Deng J., Liu X., He P., He L., et al. (2018) Structure and conformation of α-glucan extracted from Agaricus blazei Murill by high-speed shearing homogenization. Int. J. Biol. Macromol., 113, 558-564. https://doi.org/10.1016/j.ijbiomac.2018.02.151
17. Chung I., Rahuman A.A., Marimuthu S., Kirthi A.V., Anbarasan K., et al. (2017) Green synthesis of copper nanoparticles using eclipta prostrata leaves extract and their antioxidant and cytotoxic activities. Exp. Ther. Med., 14, 18-24. https://doi.org/10.3892/etm.2017.4466
18. Morais M., Teixeira A.L., Dias F., Machado V., Medeiros R., et al. (2020) Cytotoxic effect of silver nanoparticles synthesized by green methods in cancer. J. Med. Chem., 63, 14308-14335. https://doi.org/10.1021/acs.jmedchem.0c01055
19. Tsolmon B., Fang Y., Yang T., Guo L., He K., et al. (2021) Structural identification and UPLC-ESI-QTOF-MS2 analysis of flavonoids in the aquatic plant Landoltia punctata and their in vitro and in vivo antioxidant activities. Food Chem., 343, 128392. https://doi.org/10.1016/j.foodchem.2020.128392
20. De Souza V.R., Pereira P.A.P., Da Silva T.L.T., De Oliveira Lima L.C., Pio R., et al. (2014) Determination of the bioactive compounds, antioxidant activity and chemical composition of Brazilian blackberry, red raspberry, strawberry, blueberry and sweet cherry fruits. Food Chem., 156, 362-368. https://doi.org/10.1016/j.foodchem.2014.01.125
21. Klavins L., Klavina L., Huna A., and Klavins M. (2015) Polyphenols, carbohydrates and lipids in berries of Vaccinium species. Environ. Exp. Biol., 13, 147–158.
22. Dróżdż P., Šėžienė V., and Pyrzynska K., (2017) Phytochemical properties and antioxidant activities of extracts from wild blueberries and lingonberries. Plant Foods Hum. Nutr., 72, 360. https://doi.org/10.1007/S11130-017-0640-3
23. Pathania D., Pathania D., Kumar S., Thakur P., Chaudhary V., et al. (2022) Essential oil-mediated biocompatible magnesium nanoparticles with enhanced antibacterial, antifungal, and photocatalytic efficacies. Sci. Rep., 12, 1-13. https://doi.org/10.1038/s41598-022-14984-3
24. Flieger J., Franus W., Panek R., Szymańska-Chargot M., Flieger W., et al. (2021) Green synthesis of silver nanoparticles using natural extracts with proven antioxidant activity. Molecules, 26, 16. https://doi.org/10.3390/molecules26164986
25. Sharifi-Rad M., Pohl P., Epifano F., Álvarez-Suarez J.M. (2020) Green synthesis of silver nanoparticles using astragalus tribuloides delile. Root extract: Characterization, antioxidant, antibacterial, and anti-inflammatory activities. Nanomaterials, 10, 1-17. https://doi.org/10.3390/nano10122383
26. Dakshayani S.S., Marulasiddeshwara M.B., Sharath Kumar M.N., Ramesh G., Raghavendra Kumar P., et al. (2019) Antimicrobial, anticoagulant and antiplatelet activities of green synthesized silver nanoparticles using Selaginella (Sanjeevini) plant extract. Elsevier B.V, 131, 787-797. https://doi.org/10.1016/j.ijbiomac.2019.01.222
27. Vasyliev G., Vorobyova V., Skiba M., Khrokalo L. (2020) Green synthesis of silver nanoparticles using waste products (apricot and black currant pomace) aqueous extracts and their characterization. Adv. Mat. Sci. Eng., 1, 11. https://doi.org/10.1155/2020/4505787
28. Saif S., Tahir A., Chen Y. (2016) Green synthesis of iron nanoparticles and their environmental applications and implications. Nanomaterials, 6, 209. https://doi.org/10.3390/nano6110209
29. Sreelekha E., George B., Shyam A., Sajina N., Mathew B. (2021) A Comparative study on the synthesis, characterization, and antioxidant activity of green and chemically synthesized silver nanoparticles. Bionanosci., 11, 489-496. https://doi.org/10.1007/s12668-021-00824-7
30. Urnukhsaikhan E., Bold B.E., Gunbileg A., Sukhbaatar N., Mishig-Ochir T. (2021) Antibacterial activity and characteristics of silver nanoparticles biosynthesized from Carduus crispus. Sci. Rep., 11, 1-13. https://doi.org/10.1038/s41598-021-00520-2
31. Zhang X.F., Liu Z.G., Shen W., Gurunathan S. (2016) Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. Inter. J. Mol. Sci., 17, 1534. https://doi.org/10.3390/ijms17091534
32. Skrovankova S., Sumczynski D., Mlcek J., Jurikova T., Sochor J. (2015) Bioactive compounds and antioxidant activity in different types of berries. Int. J. Mol. Sci., 16, 24673-24706. https://doi.org/10.3390/ijms161024673
33. Chen C.F., Li Y.D., Xu Z. (2010) Chemical principles and bioactivities of blueberry. Acta Pharmaceutica Sinica, 45, 422-429.
34. Huang W-Y., Zhang H-C., Liu W-X., Li C-Y. (2012) Survey of antioxidant capacity and phenolic composition of blueberry, blackberry, and strawberry in Nanjing. J. Zhejiang Univ-Sci. B, 13, 94-102. https://doi.org/10.1631/jzus.B1100137
35. Iravani S. (2011) Green synthesis of metal nanoparticles using plants. Green Chem., 13, 2638-2650. https://doi.org/10.1039/c1gc15386b
36. Ahmed S., Ahmad M., Swami B.L., Ikram S. (2016) A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J. Adv. Res, 7, 17-28. https://doi.org/10.1016/j.jare.2015.02.007
37. Muntasir M., Muhib A., Mubassira M., Khanam S., Abeed-Ul-Haque S., et al. (2024) A systematic review on green synthesis of silver nanoparticles, characterization and applications. World J. Adv. Res. Rev., 21, 1221-1238. https://doi.org/10.30574/wjarr.2024.21.3.0744
38. Törrönen R., Järvinen S., Kolehmainen M. (2022) Postprandial glycemic responses to a high-protein dairy snack and energy-enriched berry snacks in older adults. Clin. Nutr. ESPEN, 51, 231-238. https://doi.org/10.1016/j.clnesp.2022.08.026
39. Kim J.S. (2018) Antioxidant activities of selected berries and their free, esterified, and insoluble-bound phenolic acid contents. Prev. Nutr. Food. Sci., 23, 35-45. https://doi.org/10.3746/pnf.2018.23.1.35
40. Xu J., Yang H., Nie C., Wang T., Qin X., et al. (2023) Comprehensive phytochemical analysis of lingonberry (Vaccinium vitis-idaea L.) from different regions of China and their potential antioxidant and antiproliferative activities. RSC Adv., 13, 29438-29449. https://doi.org/10.1039/D3RA05698H
41. Vanlalveni C., Lallianrawna S., Biswas A., Selvaraj M., Changmai B., et al. (2021) Green synthesis of silver nanoparticles using plant extracts and their antimicrobial activities: A review of recent literature. RSC Adv., 11, 2804. https://doi.org/10.1039/D0RA09941D
42. Mittal A.K., Bhaumik J., Kumar S., Banerjee U.C. (2014) Biosynthesis of silver nanoparticles: Elucidation of prospective mechanism and therapeutic potential. J. Colloid Interface Sci., 415, 39-47. https://doi.org/10.1016/J.jcis.2013.10.018
43. Kumar B., Smita K., Cumbal L., Debut A. (2015) Green synthesis of silver nanoparticles using Andean blackberry fruit extract. Saudi J. Biol. Sci., 24, 45. https://doi.org/10.1016/j.sjbs.2015.09.006
44. Danielski R., Shahidi F. (2024) Phenolic composition and bioactivities of sea buckthorn (Hippophae rhamnoides L.) fruit and seeds: An unconventional source of natural antioxidants in North America. J. Sci. Food Agric., 104, 5553-5564. https://doi.org/10.1002/jsfa.13386
45. Rai M., Yadav A., Gade A. (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv., 27, 76-83. https://doi.org/10.1016/j.biotechadv.2008.09.002
45. Ahmed S., Saifullah M., Ahmad B., Swami L., Ikram S. (2016) Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. J. Radiat. Res. Appl. Sci., 9, 1-7. https://doi.org/10.1016/j.jrras.2015.06.006
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Bolor Tsolmon, Tsetseg-Erdene Tseveglkhasuren, Nasantogtokh Oyunchimeg, Suvdmaa Tuvaanjav, Sarangerel Oidovsambuu

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright on any research article in the Mongolian Journal of Chemistry is retained by the author(s).
The authors grant the Mongolian Journal of Chemistry a license to publish the article and identify itself as the original publisher.

Articles in the Mongolian Journal of Chemistry are Open Access articles published under a Creative Commons Attribution 4.0 International License CC BY.
This license permits use, distribution and reproduction in any medium, provided the original work is properly cited.