Phytochemical investigation and in vitro anthelmintic evaluation of extracts of Wild Cinchona (Neolamarckia cadamba Roxb.) fruits

Authors

  • Praveen Kumar Uttar Pradesh University of Medical Sciences, Saifai, Etawah- 206130, Uttar Pradesh, India https://orcid.org/0000-0003-1091-6840
  • Laxmi Tripathi Agra Public Pharmacy College, Delhi-Agra National Highway-2, Artoni, Agra-282007, Uttar Pradesh, India https://orcid.org/0000-0001-6875-9927
  • Amita Verma Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India

DOI:

https://doi.org/10.5564/mjc.v24i50.2269

Keywords:

Neolamarckia cadamba, phytochemical investigation, anthelmintic evaluation, anthelmintic mechanisms

Abstract

Neolamarckia cadamba Roxb., a plant commonly used in Indian traditional medicines, has been recognized for its
anthelmintic properties. This study aimed to evaluate the in vitro anthelmintic activity of N. cadamba fruit extracts against
Ascaridia galli (roundworm), Raillietina spiralis (tapeworm), and Pheretima posthuma (Indian adult earthworm). The hydro-methanolic extract of N. cadamba fruits exhibited superior anthelmintic activity compared to the ethyl acetate extract.
Phytochemical analysis of the extracts revealed the presence of phenols, tannins, saponins, glycosides, phytosterols,
flavonoids, and terpenoids. Furthermore, the contents of phenolics, flavonoids, proanthocyanidins, and anthocyanins in the
fruit extracts were quantified. The quantitative analysis of total phenolic content of extracts revealved that hydromethanolic
extract contains higher quantity of phenolics, flavonoids, proanthocyanidins, and anthocyanins in comparision to the
ethylacetate extract. These findings support the observation that hydro-methanolic extract of N. cadamba fruits exhibited
superior anthelmintic activity compared to the ethyl acetate extract because polyphenolic compounds are well established
for their anthelmintic activity.

Downloads

Download data is not yet available.
Abstract
122
PDF
167

References

Pandey A., Negi P.S. (2016) Traditional uses, phytochemistry and pharmacological properties of Neolamarckia cadamba: A review. J. Ethnopharmacol., 181, 118-35. https://doi.org/10.1016/j.jep.2016.01.036

Ahmed F., Rahman S., Ahmed N., Hossain M., Biswas A., et al. (2011) Evaluation of Neolamarckia cadamba (Roxb.) Bosser leaf extract on glucose tolerance in glucose-induced hyperglycemic mice. Afr. J. Trad. Complement. Altern. Med., 8, 79-81. https://doi.org/10.4314/ajtcam.v8i1.60549

Asolkar L.V., Kakkar K.K., Chakre O.J. (1992) Second supplement to glossary of Indian medicinal plants with active principles, Part-1 (A-K), New Delhi, CSIR, 414.

Mondal S., Bhar K., Mahapatra A.S., Mukherjee J., Mondal P., et al. (2020) “Haripriya” god’s favorite: Anthocephalus cadamba (Roxb.) Miq. - At a glance. Phcog. Res.,12, 1-16. https://doi.org/10.4103/pr.pr_102_19

Munira S., Nesa L., Islam M.S. Begum Y., Rashid M.A. (2020) Antidiabetic activity of Neolamarckia cadamba (Roxb.) Bosser flower extract in alloxan-induced diabetic rats. Clin. Phytosci., 6, 33. https://doi.org/10.1186/s40816-020-00183-y

Tropical Plants Database, Ken Fern. tropical.theferns.info. 2022-09-29. https://tropical.theferns.info/viewtropical.php?id=Neolamarckia+cadamba

Alam M.A., Subhan N., Chowdhary S.A., Awal M.A., Mostofa M., et al. (2011) Anthocephalus cadamba extract shows hypoglycaemic effect and eases oxidative stress in alloxan induced diabetic rats. Rev. Bras. Farmacogn., 21, 155-64. https://doi.org/10.1590/S0102-695X2011005000033

Pandey A., Negi P.S. (2018) Phytochemical composition, in-vitro antioxidant activity and antibacterial mechanisms of Neolamarckia cadamba fruits extracts. Nat. Prod. Res., 32(10), 1189-92. https://doi.org/10.1080/14786419.2017.1323209

Dhingra D., Chhillar A.K., Gupta J., Khatkar B.S. (2012). Hepatoprotective potential of bark extracts from Neolamarckia cadamba against carbon tetrachloride-induced liver injury. J. Young Pharm., 4(4), 245-249.

Rajesh R., Harish G., Varma P., Ghosh S.K., Divya M.G. (2014). Evaluation of antimicrobial and wound healing potentials of Neolamarckia cadamba leaf extract. Int. J. Pharm. Pharm. Sci., 6(2), 628-631.

Sharma S., Gupta A., Kumar D. (2016). Anti-inflammatory and analgesic activities of Neolamarckia cadamba stem bark. Asian Pac. J. Trop. Med., 9(1), 32-37.

Kumar P., Solanki R., Tripathi L. (2013) In vitro anthelmintic activity of aerial parts of Vetiveria zizanioides Linn. Nash. Asian J. Chem., 25(8), 4707-08. https://doi.org/10.14233/ajchem.2013.14199C

Kumar P., Solanki R., Tripathi L. (2013) In vitro anthelmintic activity of seeds of Cicer arietinum Linn. Nash. Asian J. Chem., 25(9), 5109-10. https://doi.org/10.14233/ajchem.2013.14199C

Chen C. (1986) General parasitology (2nd ed.) Academic Press, Division of Hardcourt Brace & company USA, 402-416.

Yamaguti S. (1961) Systema helminthum. The nematodes of vertebrates. Interscience Publishers, New York and london, 1261.

Liu C.H., Lin Y.W., tang N.Y., Liu H.J., Huang C.Y., et al. (2012) Effect of oral administration of Pheretima aspergillum (earthworm) in rats with cerebral infarction induced by middle cerebral artery occlusion. Afr., J. Tradit. Complement. Altern. Med., 10(1), 66-82. https://doi.org/10.4314/ajtcam.v10i1.11

Singleton V.L., Orthofer R., Lamuela-Raventos R.M. (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol., 299, 152-78. https://doi.org/10.1016/S0076-6879(99)99017-1

Jia Z., Tang M., Wu J. (1999) The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem., 64, 555-9. https://doi.org/10.1016/S0308-8146(98)00102-2

Sun B., Ricardo-da-Silva J.M., Spranger I. (1998) Critical factors of vanillin assay for catechins and proanthocyanidins. J. Agric. Food Chem., 46, 4267-74. https://doi.org/10.1021/jf980366j

Egbuna C., Ifemeje J.C., Maduako M.C., Tijjani H., Udedi S.C., et al. (2018) Phytochemical test methods: Qualitative, quantitative and proximate analysis. In Phytochemistry: V. 1: Fundamentals, Modern Techniques, and Applications, 1st ed., New York, Apple Academic Press, 381-425. https://doi.org/10.1201/9780429426223-15

Yadav A.K., Temjenmongla. (2006) Anthelmintic activity of Gynura angulosa DC against Trichinella spiralis infections in mice. Pharmacology online 2, 299-306.

Vidyarthi R.D. (1967) Pheritima phostuma. In: A text book of Zoology. New Delhi, India, S Chand and Co, 329-70.

Ajaiyeoba E.O., Onocha P.A., Larenwaju O.T.O. (2001) In vitro anthelmintic properties of Buchholzia coriaceae and Gynandropsis gynandra extract. Pharm. Biol., 39, 217-20. https://doi.org/10.1076/phbi.39.3.217.5936

Escareño-Díaz S., Alonso-Díaz MA.., Mendoza de Gives P., Castillo-Gallegos E., Von Son-de Fernex E. (2019) Anthelmintic-like activity of polyphenolic compounds and their interactions against the cattle nematode Cooperia punctate. Vet. Parasitol., 274, 108909. https://doi.org/10.1016/j.vetpar.2019.08.003

Bate-Smith E.C. (1962) The phenolic constituents of plants and their taxonomic significance. I. Dicotyledons. Bot. J. Linn. Soc., 58, 95. https://doi.org/10.1111/j.1095-8339.1962.tb00890.x

Athnasiadou S., Kyriazakis I., Jackson F., Coop R.L. (2001) Direct anthelmintic effects of condensed tannins towards different gastrointestinal nematodes of sheep: in vitro and in vivo studies. Vet. Parasitol., 99, 205. https://doi.org/10.1016/S0304-4017(01)00467-8

Thompson D.P., Geary T.G., Marr J.J. (1995) Biochemistry and molecular biology of parasites. New York: Academic Press, Edn. 1, 203-32. https://doi.org/10.1016/B978-012473345-9/50013-1

Downloads

Published

2023-12-26

How to Cite

Kumar, P., Tripathi, L., & Verma, A. (2023). Phytochemical investigation and in vitro anthelmintic evaluation of extracts of Wild Cinchona (Neolamarckia cadamba Roxb.) fruits. Mongolian Journal of Chemistry, 24(50), 46–50. https://doi.org/10.5564/mjc.v24i50.2269

Issue

Section

Articles