Phytochemical investigation and in vitro anthelmintic evaluation of extracts of Wild Cinchona (Neolamarckia cadamba Roxb.) fruits
DOI:
https://doi.org/10.5564/mjc.v24i50.2269Keywords:
Neolamarckia cadamba, phytochemical investigation, anthelmintic evaluation, anthelmintic mechanismsAbstract
Neolamarckia cadamba Roxb., a plant commonly used in Indian traditional medicines, has been recognized for its
anthelmintic properties. This study aimed to evaluate the in vitro anthelmintic activity of N. cadamba fruit extracts against
Ascaridia galli (roundworm), Raillietina spiralis (tapeworm), and Pheretima posthuma (Indian adult earthworm). The hydro-methanolic extract of N. cadamba fruits exhibited superior anthelmintic activity compared to the ethyl acetate extract.
Phytochemical analysis of the extracts revealed the presence of phenols, tannins, saponins, glycosides, phytosterols,
flavonoids, and terpenoids. Furthermore, the contents of phenolics, flavonoids, proanthocyanidins, and anthocyanins in the
fruit extracts were quantified. The quantitative analysis of total phenolic content of extracts revealved that hydromethanolic
extract contains higher quantity of phenolics, flavonoids, proanthocyanidins, and anthocyanins in comparision to the
ethylacetate extract. These findings support the observation that hydro-methanolic extract of N. cadamba fruits exhibited
superior anthelmintic activity compared to the ethyl acetate extract because polyphenolic compounds are well established
for their anthelmintic activity.
Downloads
122
References
Pandey A., Negi P.S. (2016) Traditional uses, phytochemistry and pharmacological properties of Neolamarckia cadamba: A review. J. Ethnopharmacol., 181, 118-35. https://doi.org/10.1016/j.jep.2016.01.036
Ahmed F., Rahman S., Ahmed N., Hossain M., Biswas A., et al. (2011) Evaluation of Neolamarckia cadamba (Roxb.) Bosser leaf extract on glucose tolerance in glucose-induced hyperglycemic mice. Afr. J. Trad. Complement. Altern. Med., 8, 79-81. https://doi.org/10.4314/ajtcam.v8i1.60549
Asolkar L.V., Kakkar K.K., Chakre O.J. (1992) Second supplement to glossary of Indian medicinal plants with active principles, Part-1 (A-K), New Delhi, CSIR, 414.
Mondal S., Bhar K., Mahapatra A.S., Mukherjee J., Mondal P., et al. (2020) “Haripriya” god’s favorite: Anthocephalus cadamba (Roxb.) Miq. - At a glance. Phcog. Res.,12, 1-16. https://doi.org/10.4103/pr.pr_102_19
Munira S., Nesa L., Islam M.S. Begum Y., Rashid M.A. (2020) Antidiabetic activity of Neolamarckia cadamba (Roxb.) Bosser flower extract in alloxan-induced diabetic rats. Clin. Phytosci., 6, 33. https://doi.org/10.1186/s40816-020-00183-y
Tropical Plants Database, Ken Fern. tropical.theferns.info. 2022-09-29. https://tropical.theferns.info/viewtropical.php?id=Neolamarckia+cadamba
Alam M.A., Subhan N., Chowdhary S.A., Awal M.A., Mostofa M., et al. (2011) Anthocephalus cadamba extract shows hypoglycaemic effect and eases oxidative stress in alloxan induced diabetic rats. Rev. Bras. Farmacogn., 21, 155-64. https://doi.org/10.1590/S0102-695X2011005000033
Pandey A., Negi P.S. (2018) Phytochemical composition, in-vitro antioxidant activity and antibacterial mechanisms of Neolamarckia cadamba fruits extracts. Nat. Prod. Res., 32(10), 1189-92. https://doi.org/10.1080/14786419.2017.1323209
Dhingra D., Chhillar A.K., Gupta J., Khatkar B.S. (2012). Hepatoprotective potential of bark extracts from Neolamarckia cadamba against carbon tetrachloride-induced liver injury. J. Young Pharm., 4(4), 245-249.
Rajesh R., Harish G., Varma P., Ghosh S.K., Divya M.G. (2014). Evaluation of antimicrobial and wound healing potentials of Neolamarckia cadamba leaf extract. Int. J. Pharm. Pharm. Sci., 6(2), 628-631.
Sharma S., Gupta A., Kumar D. (2016). Anti-inflammatory and analgesic activities of Neolamarckia cadamba stem bark. Asian Pac. J. Trop. Med., 9(1), 32-37.
Kumar P., Solanki R., Tripathi L. (2013) In vitro anthelmintic activity of aerial parts of Vetiveria zizanioides Linn. Nash. Asian J. Chem., 25(8), 4707-08. https://doi.org/10.14233/ajchem.2013.14199C
Kumar P., Solanki R., Tripathi L. (2013) In vitro anthelmintic activity of seeds of Cicer arietinum Linn. Nash. Asian J. Chem., 25(9), 5109-10. https://doi.org/10.14233/ajchem.2013.14199C
Chen C. (1986) General parasitology (2nd ed.) Academic Press, Division of Hardcourt Brace & company USA, 402-416.
Yamaguti S. (1961) Systema helminthum. The nematodes of vertebrates. Interscience Publishers, New York and london, 1261.
Liu C.H., Lin Y.W., tang N.Y., Liu H.J., Huang C.Y., et al. (2012) Effect of oral administration of Pheretima aspergillum (earthworm) in rats with cerebral infarction induced by middle cerebral artery occlusion. Afr., J. Tradit. Complement. Altern. Med., 10(1), 66-82. https://doi.org/10.4314/ajtcam.v10i1.11
Singleton V.L., Orthofer R., Lamuela-Raventos R.M. (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol., 299, 152-78. https://doi.org/10.1016/S0076-6879(99)99017-1
Jia Z., Tang M., Wu J. (1999) The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem., 64, 555-9. https://doi.org/10.1016/S0308-8146(98)00102-2
Sun B., Ricardo-da-Silva J.M., Spranger I. (1998) Critical factors of vanillin assay for catechins and proanthocyanidins. J. Agric. Food Chem., 46, 4267-74. https://doi.org/10.1021/jf980366j
Egbuna C., Ifemeje J.C., Maduako M.C., Tijjani H., Udedi S.C., et al. (2018) Phytochemical test methods: Qualitative, quantitative and proximate analysis. In Phytochemistry: V. 1: Fundamentals, Modern Techniques, and Applications, 1st ed., New York, Apple Academic Press, 381-425. https://doi.org/10.1201/9780429426223-15
Yadav A.K., Temjenmongla. (2006) Anthelmintic activity of Gynura angulosa DC against Trichinella spiralis infections in mice. Pharmacology online 2, 299-306.
Vidyarthi R.D. (1967) Pheritima phostuma. In: A text book of Zoology. New Delhi, India, S Chand and Co, 329-70.
Ajaiyeoba E.O., Onocha P.A., Larenwaju O.T.O. (2001) In vitro anthelmintic properties of Buchholzia coriaceae and Gynandropsis gynandra extract. Pharm. Biol., 39, 217-20. https://doi.org/10.1076/phbi.39.3.217.5936
Escareño-Díaz S., Alonso-Díaz MA.., Mendoza de Gives P., Castillo-Gallegos E., Von Son-de Fernex E. (2019) Anthelmintic-like activity of polyphenolic compounds and their interactions against the cattle nematode Cooperia punctate. Vet. Parasitol., 274, 108909. https://doi.org/10.1016/j.vetpar.2019.08.003
Bate-Smith E.C. (1962) The phenolic constituents of plants and their taxonomic significance. I. Dicotyledons. Bot. J. Linn. Soc., 58, 95. https://doi.org/10.1111/j.1095-8339.1962.tb00890.x
Athnasiadou S., Kyriazakis I., Jackson F., Coop R.L. (2001) Direct anthelmintic effects of condensed tannins towards different gastrointestinal nematodes of sheep: in vitro and in vivo studies. Vet. Parasitol., 99, 205. https://doi.org/10.1016/S0304-4017(01)00467-8
Thompson D.P., Geary T.G., Marr J.J. (1995) Biochemistry and molecular biology of parasites. New York: Academic Press, Edn. 1, 203-32. https://doi.org/10.1016/B978-012473345-9/50013-1
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 LAXMI TRIPATHI LAXMI, PRAVEEN KUMAR, AMITA VERMA
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright on any research article in the Mongolian Journal of Chemistry is retained by the author(s).
The authors grant the Mongolian Journal of Chemistry a license to publish the article and identify itself as the original publisher.
Articles in the Mongolian Journal of Chemistry are Open Access articles published under a Creative Commons Attribution 4.0 International License CC BY.
This license permits use, distribution and reproduction in any medium, provided the original work is properly cited.