Preparation of catalyst from natural montmorillonite mineral and its application in the synthesis of carbon nanosphere

Authors

  • Altantuya Ochirkhuyag Institute of Chemistry and Chemical Technology, Mongolian Academy of Sciences, Ulaanbaatar, 13330, Mongolia https://orcid.org/0000-0001-6495-7360
  • Ulambayar Rentsennorov Institute of Chemistry and Chemical Technology, Mongolian Academy of Sciences, Ulaanbaatar, 13330, Mongolia.
  • Davaabal Batmunkh Institute of Chemistry and Chemical Technology, Mongolian Academy of Sciences, Ulaanbaatar, 13330, Mongolia.
  • Oyun-Erdene Gendenjamts Institute of Chemistry and Chemical Technology, Mongolian Academy of Sciences, Ulaanbaatar, 13330, Mongolia.
  • Enkhtur Odbaatar Institute of Chemistry and Chemical Technology, Mongolian Academy of Sciences, Ulaanbaatar, 13330, Mongolia.
  • Tserendagva Tsend-Ayush Erdenet Mining Institute, Erdenet, 61027, Mongolia
  • Jadambaa Temuujin Institute of Chemistry and Chemical Technology, Mongolian Academy of Sciences, Ulaanbaatar, 13330, Mongolia.

DOI:

https://doi.org/10.5564/mjc.v23i49.2430

Keywords:

Silica, carbon nanosphere, mineral, nanoparticle, catalyst

Abstract

In developed countries, nanoparticles derived from natural minerals and high-purity chemicals both are widely studied, while in developing countries like Mongolia, the natural minerals-based nanoparticles have more interest because of the low production cost and applicability of domestic natural minerals for their production. For the synthesis of natural mineral-based nanomaterials, it is important first to define the chemical composition and physical structure of local minerals and their possible processing route. We employed an environmentally friendly alkaline leaching procedure to recover silica from the clay mineral at 90°C for 24 hours. We applied an organic surfactant (CTAB) and a simple coprecipitation approach to form iron-doped silica nanoparticles. Consequently, we used iron-doped silica nanoparticles as a substrate and catalyst for the synthesis of carbon nanosphere at 750 °C for 1 hour in an argon and acetylene gas atmosphere. As a result, vast quantities of superhydrophobic carbon nanospheres (CNS) were obtained. The physicochemical properties of nanosilica substrate, non-functionalized carbon nanosphere, and functionalized carbon nanosphere (CNS) samples were characterized using XRD, XRF, SEM, EDS, TEM, and FTIR spectrometer. Iron-doped mineral-derived nanosilica particles demonstrated high catalytic efficiency and the potential to produce a large amount of value-added carbon nanospheres. Superhydrophobic CNS can be used in a variety of applications, particularly drug delivery; however, to use CNS in both aqueous and non-aqueous media, the superhydrophobic properties of CNS can be modified using different oxidizers. The changes in hydrophobicity of the CNS were examined and suggested possible oxidizing agents.

Downloads

Download data is not yet available.
Abstract
227
PDF 200

Author Biography

Jadambaa Temuujin, Institute of Chemistry and Chemical Technology, Mongolian Academy of Sciences, Ulaanbaatar, 13330, Mongolia.

CITI University, Ulaanbaatar, 14190, Mongolia

References

Čejka J., Roth W.J., Opanasenko M. (2017). Two-dimensional silica-based inorganic networks. In: Jerry L. Atwood (ed.) Comprehensive supramolecular chemistry II, Elsevier, 475-501. https://doi.org/10.1016/B978-0-12-409547-2.13647-9

Haldar S.K., Tišljar J. (2014). Basic Mineralogy. In: Introduction to mineralogy and petrology. Chapter II, Elsevier, 39-79. https://doi.org/10.1016/B978-0-12-408133-8.00002-X

Moulijn J.A., van Leeuwen P.W.N.M., van Santen R.A. (1993). Catalytic processes in industry. In: Studies in surface science and catalysis. Chapter II, Elsevier, 23-67. https://doi.org/10.1016/S0167-2991(08)63806-9

Ashutosh Tiwari, Shukla S.K. (2014). Advanced carbon materials and technology. John Wiley & Sons, Inc. 1-514. https://doi.org/10.1002/9781118895399

Fang Y., Guo S., Li D., Zhu C., Ren W., et al. (2012). Easy synthesis and imaging applications of cross-linked green fluorescent hollow carbon nanoparticles. ACS Nano, 6(1), 400-409. https://doi.org/10.1021/nn2046373

Zhao H., Zhang F., Zhang S., He S., Shen F., et al. (2018). Scalable synthesis of sub-100 nm hollow carbon nanospheres for energy storage applications. Nano Res., 11, 1822-1833. https://doi.org/10.1007/s12274-017-1800-3

Nieto-Márquez A., Romero R., Romero A., Valverde, J.L. (2011). Carbon nanospheres: Synthesis, physicochemical properties and applications. J. Mater. Chem., 21(6), 1664-1672. https://doi.org/10.1039/C0JM01350A

Ciasca G., Papi M., Businaro L., Campi G., Ortolani M., et al. (2016). Recent advances in superhydrophobic surfaces and their relevance to biology and medicine. Bioinspir. Biomim., 11(1). https://doi.org/10.1088/1748-3190/11/1/011001

Aljumaily M.M., Alsaadi M.A., Das R., Abd Hamid S.B., Hashim N.A., et al. (2018). Optimization of the synthesis of superhydrophobic carbon nanomaterials by chemical vapor deposition. Sci. Rep., 8(1). https://doi.org/10.1038/s41598-018-21051-3

Kim T.W., Chung P.W., Slowing I.I., Tsunoda M., Yeung E.S., et al. (2008). Structurally ordered mesoporous carbon nanoparticles as transmembrane delivery vehicle in human cancer cells. Nano Lett., 8(11), 3724-3727. https://doi.org/10.1021/nl801976m

Ghaemi F., Yunus R., Jassim L., Ahmadian A., Ismail F. (2015). Synthesis of carbon nanotube-carbon nanosphere on the CF surface by CVD. Advanced Mater. Res., 1134, 209-212. https://doi.org/10.4028/www.scientific.net/AMR.1134.209

Kumar A., Kostikov Y., Orberger B., Nessim G.D., Mariotto G. (2018). Natural laterite as a catalyst source for the growth of carbon nanotubes and nanospheres. ACS Appl. Nano Mate., 1(11), 6046-6054. https://doi.org/10.1021/acsanm.8b01117

Miao J.Y., Hwang D.W., Narasimhulu K.V., Lin P.I., Chen Y.T., et al. (2004). Synthesis and properties of carbon nanospheres grown by CVD using Kaolin supported transition metal catalysts. Carbon, 42(4), 813-822. https://doi.org/10.1016/j.carbon.2004.01.053

Poyraz A. ., Dag Ö. (2009). Role of organic and inorganic additives on the assembly of CTAB-P123 and the morphology of mesoporous silica particles. Journal of Physical Chemistry C, 113(43), 18596-18607. https://doi.org/10.1021/jp907303a

Kim M.K., Ki D.H., Na Y.G., Lee H.S., Baek J.S., et al. (2021). Optimization of mesoporous silica nanoparticles through statistical design of experiment and the application for the anticancer drug. Pharmaceutics, 13(2). https://doi.org/10.3390/pharmaceutics13020184

Djowe A.T., Laminsi S., Njopwouo D., Acayanka E., Gaigneaux E.M. (2013). Surface modification of smectite clay induced by non-thermal gliding arc plasma at atmospheric pressure. Plasma Chem. Plasma Process., 33(4), 707-723. https://doi.org/10.1007/s11090-013-9454-8

Maddalena R., Hall C., Hamilton A. (2019). Effect of silica particle size on the formation of calcium silicate hydrate [C-S-H] using thermal analysis. Thermochimica Acta, 672, 142-149. https://doi.org/10.1016/j.tca.2018.09.003

Marsh A., Heath A., Patureau P., Evernden M., Walker P. (2018). Alkali activation behaviour of un-calcined montmorillonite and illite clay minerals. Applied Clay Science, 166, 250-261. https://doi.org/10.1016/j.clay.2018.09.011

Zhuang L., Zhang W., Zhao Y., Shen H., Lin H., Liang J. (2015). Preparation and characterization of Fe3O4 particles with novel nanosheets morphology and magnetochromatic property by a modified solvothermal method. Sci. Rep., 5. https://doi.org/10.1038/srep09320

Pol V.G., Pol S.V., Calderon Moreno J.M., Gedanken A. (2006). High yield one-step synthesis of carbon spheres produced by dissociating individual hydrocarbons at their autogenic pressure at low temperatures. Carbon, 44(15), 3285-3292. https://doi.org/10.1016/j.carbon.2006.06.023

Zhao N., Wang J., Shi C., Liu E., Li J., He C. (2014). Chemical vapor deposition synthesis of carbon nanospheres over Fe-based glassy alloy particles. Journal of Alloys and Compounds, 617, 816-822. https://doi.org/10.1016/j.jallcom.2014.08.072

Hussain N., Alwan S., Alshamsi H., Sahib I. (2020). Green synthesis of S- and N-codoped carbon nanospheres and application as adsorbent of Pb (II) from aqueous solution. International Journal of Chemical Engineering, 2020. https://doi.org/10.1155/2020/9068358

Boufades D., Hammadou S., Mesdour N., Moussiden A., Benmebrouka H., et al. One-step synthesis and characterization of carbon nanospheres via natural gas condensate pyrolysis. Fullerenes, Nanotubes and Carbon Nanostructures, 28(9), 716-723. https://doi.org/10.1080/1536383X.2020.1750383

Azri F.A., Sukor R., Hajian R., Yusof N. A., Bakar F.A., et al. (2017). Modification strategy of screen-printed carbon electrode with functionalized multi-walled carbon nanotube and chitosan matrix for biosensor development. Asian Journal of Chemistry, 29(1), 3136. https://doi.org/10.14233/ajchem.2017.20104

Trykowski G., Biniak S., Stobinski L., Lesiak B. (2010). Preliminary investigations into the purification and functionalization of multiwall carbon nanotubes. 118. In Acta Physica Polonica A, 118(3), 515-518. https://doi.org/10.12693/APhysPolA.118.515

Slobodian P., Riha P., Olejnik R., Cvelbar U., Saha P. (2013). Enhancing effect of KMnO4 oxidation of carbon nanotubes network embedded in elastic polyurethane on overall electro-mechanical properties of composite. Composites Science and Technology, 81, 54-60.

Santangelo S., Messina G., Faggio G., Abdul Rahim S.H., Milone C. (2012). Effect of sulphuric-nitric acid mixture composition on surface chemistry and structural evolution of liquid-phase oxidised carbon nanotubes. Journal of Raman Spectroscopy, 43(10), 1432-1442. https://doi.org/10.1002/jrs.4097

Ciofani G., Raffa V., Pensabene V., Menciassi A., Dario P. (2009). Dispersion of multi-walled carbon nanotubes in aqueous pluronic F127 solutions for biological applications. Fullerenes Nanotubes and Carbon Nanostructures, 17(1), 11-25. https://doi.org/10.1080/15363830802515840

Gu J., Su S., Li Y., He Q., Shi J. (2011). Hydrophilic mesoporous carbon nanoparticles as carriers for sustained release of hydrophobic anti-cancer drugs. Chemical Communications, 47(7), 2101-2103. https://doi.org/10.1039/C0CC04598E

Singhal S., Dixit S., Shukla A.K. (2019). Structural analysis of carbon nanospheres synthesized by CVD: an investigation of surface charges and its effect on the stability of carbon nanostructures. Applied Physics A: Materials Science and Processing, 125(80). https://doi.org/10.1007/s00339-018-2372-0

Hoc Thang N., Sy Khang D., Duy Hai T., Thi Nga D., Dinh Tuan P. (2021). Methylene blue adsorption mechanism of activated carbon synthesised from cashew nut shells. RSC Advances, 11(43), 26563-26570. https://doi.org/10.1039/D1RA04672A

Hammadou née Mesdour S., Boufades D., Bousak H., Moussiden A., Benmabrouka H., et.al. (2022). Potential application of carbon nanospheres as adsorbent for the simultaneous desulfurization and demetallization of transportations fuels. Fullerenes Nanotubes and Carbon Nanostructures, 30(4), 419-427. https://doi.org/10.1080/1536383X.2021.1947809

Downloads

Additional Files

Published

2022-12-23

How to Cite

Ochirkhuyag, A., Rentsennorov, U., Batmunkh, D., Gendenjamts, O.-E., Odbaatar, E., Tsend-Ayush, T., & Temuujin, J. (2022). Preparation of catalyst from natural montmorillonite mineral and its application in the synthesis of carbon nanosphere. Mongolian Journal of Chemistry, 23(49), 32–37. https://doi.org/10.5564/mjc.v23i49.2430

Issue

Section

Articles