The Paleozoic Granitic Rocks from the Telmen Complex in the Tarvagatai Block, Central Mongolia: Petrogenesis, U-Pb geochronology, and its tectonic implications

Authors

  • Naidansuren Tungalag Department of Magmatism and Metallogeny, Institute of Geology, Mongolian Academy of Sciences, Ulaanbaatar 15160, Mongolia https://orcid.org/0000-0001-7073-8383
  • Bayaraa Ganbat Department of Magmatism and Metallogeny, Institute of Geology, Mongolian Academy of Sciences, Ulaanbaatar 15160, Mongolia https://orcid.org/0000-0001-8304-0160
  • Sukhbat Baasansuren Department of Magmatism and Metallogeny, Institute of Geology, Mongolian Academy of Sciences, Ulaanbaatar 15160, Mongolia
  • Gansukh Orgil 1Department of Magmatism and Metallogeny, Institute of Geology, Mongolian Academy of Sciences, Ulaanbaatar 15160, Mongolia https://orcid.org/0000-0002-3884-0254
  • Davaadorj Enkhhtsatsral Department of Magmatism and Metallogeny, Institute of Geology, Mongolian Academy of Sciences, Ulaanbaatar 15160, Mongolia
  • Myamarsuren Batmunkh Department of Magmatism and Metallogeny, Institute of Geology, Mongolian Academy of Sciences, Ulaanbaatar 15160, Mongolia

DOI:

https://doi.org/10.5564/mgs.v28i56.2427

Keywords:

Magmatism, geochemistry, Ordovician-Silurian granitic rocks, geodynamic settings

Abstract

The Tarvagatai Block is located in the northern part of Central Mongolia, which is a widespread occurrence and occupies roughly 60% of the whole exposure along the Khangai fault and the Tarvagatai uplift. Granitic magmatism was emplacement during the Middle Paleozoic, which is predominantly composed of granite-granodiorite and gabbro-diorite and rarely gabbro. This article represents petrographical, geochemical, and U-Pb zircon age data from the Telmen Complex of the Tarvagatai Block, Central Mongolia. The U-Pb dating of zircon yields a Late Silurian emplacement age (419±3 Ma) for the Telmen Complex. Geochemically, the Telmen Complex is an I-type intrusion of metaluminous nature with a SiO2 content ranging from 53.06 to 72.25 wt.% and mainly of medium to high K calc-alkaline series. Telmen Complex granites show enrichments in light rare earth elements, depletion in heavy rare earth elements, with a ratio of 4.053, (La/Yb)N =9.15, and weak positive or normal Eu anomalies. A spider diagram indicates that these rocks are enriched in Ba, K, Pb, and Sr and depleted in Nb, Ta, and Ti. The Early Paleozoic Telmen Complex granitics have trace element features, for example, Nb-Ta depletions, which indicate that these rock units were emplaced in a convergent-margin setting and typical of the lower continental crust. In addition, the geochemical data show that the volcanic arc tectonic setting and, moreover, the continental arc array setting display on the Nb/Yb versus TiO2/Yb diagrams. Therefore, we suggest that they were probably positioned in an active continental setting and in a Silurian ~419 Ma.  

Downloads

Download data is not yet available.
Abstract
243
PDF
289

Author Biography

Bayaraa Ganbat, Department of Magmatism and Metallogeny, Institute of Geology, Mongolian Academy of Sciences, Ulaanbaatar 15160, Mongolia

CAS Key Laboratory of Crust-Mantle Materials and Environments, University of Science and Technology of China, Hefei 230026, China

References

Anisimova, I.V., Kozakov, I.K., Yarmolyuk, V.V., Kozlovsky, A.M., Kovach, V.P., Kudryashova, E.A., Savatenkov, V.M., Terent’eva, L.B., Fedoseenko, A.M., Yakovleva, S.Z., Enzhin, G. 2009. Age, sources, and geological position of anorthosites of Precambrian terranes of Central Asia: Example from the Khunzhilingol Massif, Mongolia. Dokady Earth Sciences, v. 428 (1), p. 1120-1125. https://doi.org/10.1134/S1028334X09070186

Buriánek, D., Krejčí, Z., Jiang, Y., Otgonbaatar, D. 2020. Geology of the Gobi and Mongol Altai junction enhanced by gravity analysis: a key for understanding of the Mongolian Altaides. Journal of Maps, v. 16(2), p. 98–107. https://doi.org/10.1080/17445647.2019.1700835

Chen, N.H.C., Zhao, G., Jahn B.M., Zhou, H., Sun, M. 2017. Geochemistry and geochronology of the Delinggou Intrusion: Implications for the subduction of the Paleo-Asian Ocean beneath the North China Craton. Gondwana Research, v. 43, p. 178-192. https://doi.org/10.1016/j.gr.2016.01.007

Corfu, F., Hanchar, J.M., Hoskin, P.W.O., Kinny, P. 2003. Atlas of zircon textures. Reviews in Mineralogy and Geochemistry, v. 53, p. 469-500. https://doi.org/10.2113/0530469

Cox, K.G., Bell, J.D., Pankhurst, R.J. 1979. The interpretation of data for plutonic rocks. In The Interpretation of Igneous Rocks. Springer, p. 308-331. https://doi.org/10.1007/978-94-017-3373-1_13

Erdenechimeg, D., Boldbaatar, G., Enkhbayar, B., Damdinjav, B., Taivanbaatar, Ts., Oyungerel, N. 2017. Geology map of Mongolia, scale 1:500 000. Eds. Tumurtogoo,O., Orolmaa, D. Geoinformation database-2013 project. Geological Information Center, Mongolia.

Fedorov, E. 1966. Geological formations of the western part of the Tarvagatai mountain range, Khungui and Galuut river delta (M-46-G, M-47-B, L-47-A planes) 1: 1,000,000 scale geological mapping report performed in 1966 under Contract No. 91497 dated April 23, 1966).

Gill, J.B. 1981. What is “Typical Calcalkaline Andesite”? In Orogenic Andesites and Plate Tectonics, Springer p. 1-12. https://doi.org/10.1007/978-3-642-68012-0_1

Guan, Q.B., Liu, Z.H., Wang, X.A., Wang, B., Wang, S.J. 2018. Zircon U-P-Hf isotopic and geochemical characteristics of the Xierzi biotite monzogranite pluton, Linxi, Inner Mongolia and its tectonic implications. Geoscience Frontiers, v. 9, p. 505-516. https://doi.org/10.1016/j.gsf.2017.05.004

Hanžl, P., Guy, A., Battushig, A., Lexa, O., Schulmann, K., Kunceová, E., Hrdličková, K., Janoušek, V., Hawkesworth, C.J., Turner, S.P., McDermott, F., Peate, D.W., Van Calsteren, P. 1997. U-Th isotopes in arc magmas: Implications for element transfer from the subducted crust. Science, v. 276(5312), p. 551-555. https://doi.org/10.1126/science.276.5312.551 PMid:9110968

Hoskin, P.W O., Schaltegger, U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry, v. 53, p. 27-55. https://doi.org/10.2113/0530027

Jahn, B.M., Capdevila, R., Liu, D., Vernon, A., Badarch, G. 2004. Sources of Phanerozoic granitics in the transect Bayanhongor-Ulaanbaatar, Mongolia: Geochemical and Nd isotopic evidence and implications for Phanerozoic crustal growth. Journal of Asian Earth Sciences, v. 23(5), p. 629–653. https://doi.org/10.1016/S1367-9120(03)00125-1

Jahn, B.M., Wu, F., Chen, B., 2000a. Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic. Transactions of the Royal Society of Edinburgh: Earth Sciences, v. 91(1-2), p. 181–193. https://doi.org/10.1017/S0263593300007367

Jahn, B.M., Wu, F., Chen, B., 2000b. Massive granitoid generation in Central Asia: Nd isotope evidence and implication for continental growth in the Phanerozoic. Episodes, v.23(2), p. 82-92. https://doi.org/10.18814/epiiugs/2000/v23i2/001 PMid:25688382

Kheraskov, N.N. 1966. Geological sheet map, 1:1000,000. Open file report in geological finds of Mongolia no.1752. (in Russian)

Kozakov, I.K., Kozlovsky, A.M., Yarmolyuk, V.V. 2011. Crystalline complexes of the Tarbagatai Block of the Early Caledonian superterrane of Central Asia. Petrology, v. 19(4), p. 426-443. https://doi.org/10.1134/S0869591111040047

Kröner, A., Kovach, V., Belousova, E., Hegner, E., Armstrong, R., Dolgopolova, A., Seltmann, R., Alexeiev, D.V., Hoffmann, J.E., Wong, J., Sun, M., Cai, K., Wang, T., Tong, Y., Wilde, S.A., Degtyarev, K.E., Rytsk, E. 2014. Reassessment of continental growth during the accretionary history of the Central Asian Orogenic Belt. Gondwana Research, v. 25, p. 103-125. https://doi.org/10.1016/j.gr.2012.12.023

Liu, Y.J., Li, W.M., Feng, Z.Q., Wen, Q.B., Neubauer, F., Liang, C.Y. 2016. A Review of the Paleozoic Tectonics in the Eastern Part of Central Asian Orogenic Belt. Gondwana Research, v. 43, p. 123-148. https://doi.org/10.1016/j.gr.2016.03.013

Middlemost, E.A.K. 1986. Magmas and Magmatic Rocks: An Introduction to Igneous Petrology. Longman Group Ltd., London, New York, p. 266.

Pearce, J.A, Harris, N.B.W., Tindle, A.G. 1984. Trace element distribution diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, v. 25(4), p. 956-983. https://doi.org/10.1093/petrology/25.4.956

Pearce, J.A. 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos, v. 100(1-4), p. 14-48. https://doi.org/10.1016/j.lithos.2007.06.016

Peccerillo, A., Taylor, S.R. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to Mineralogy and Petrology, v. 58(1), p. 63-81. https://doi.org/10.1007/BF00384745

Pupin, J.P. 1980. Zircon and Granite Petrology. Contribution to Mineralogy and Petrology, v.73, p. 207-220. https://doi.org/10.1007/BF00381441

Rudnick, R.L., Gao, S. 2003. Composition of the Continental Crust. In Treatise on Geochemistry 3. 2nd Ed., v. 3, p. 1-64. https://doi.org/10.1016/B0-08-043751-6/03016-4

Schulmann, K., Paterson, S. 2011. Asian Continental Growth. Nature, v. 4(12), p. 827–829. https://doi.org/10.1038/ngeo1339

Şengör, A.M.C., Natal´in, B,A., Burtman, V.S. 1993. Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia. Nature, v. 364, p. 299-307. https://doi.org/10.1038/364299a0

Streckeisen, A., Le Maitre, R.W. 1979. A chemical approximation to the modal QAPF classification of the igneous rocks. Neues Jahrbuch fur Mineralogie, Abhandlungen, v.136, p. 169-206.

Sun, S.S., McDonough, W.F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society Special Publication, v. 42(1), p. 313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19

Sun, D.Y., Wu, F.Y., Zhang, Y.B., Gao, S. 2004. The final closing time of the west Lamulun River-Changchun-Yanji plate suture zone: Evidence from the Dayushan granitic pluton, Jilin Province. Journal of Jilin University (Earth Science Edition), v,. 34, p. 174-181.

Windley, B.F., Alexeiev, D., Xiao, W.J., Kröner, A., Badarch, G. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt. Journal of Geological Society. v. 164, p. 31-47. https://doi.org/10.1144/0016-76492006-022

Yarmolyuk V.V., Kozlovsky A.M., Travin A.V., Kirnozova, T.I., Fugzan, M.M., Kozakov, I.K., Plotkina, Yu.V., Eenjin, G., Oyunchimeg, Ts., Sviridova, O.E. 2019. Duration and geodynamic nature of giant Central Asian Batholiths: Geological and geochronological studies of the Khangai Batholith. Stratigraphy and Geological Correlation, v. 27(1), p. 73-94. https://doi.org/10.1134/S0869593819010088

Yarmolyuk, V.V., Kuzmin, M.I., Kozlovsky, A.M. 2013. Late Paleozoic-Early Mesozoic within-plate magmatism in north Asia: traps, rifts, giant batholiths, and the geodynamics of their origin, Petrology, v. 21(2), p. 101-126. https://doi.org/10.1134/S0869591113010062

Yarmolyuk, V.V., Kozakov, I.K., Kozlovsky, A.M. 2018. The Early Paleozoic Active Margin of the Khangai Segment of the Mongol-Okhotsk Ocean. Doklady Earth Science. v. 480, p. 559–563. https://doi.org/10.1134/S1028334X18050094

Yarmolyuk, V.V., Kozlovsky, A.M., Savatenkov, V.M., Kovach, V.P., Kozakov, I.K., Kotov, A.B., Lebedev, V.I., Eenjin, G. 2016. Composition, Sources, and Geodynamic Nature of Giant Batholiths in Central Asia: Evidence from the Geochemistry and Nd Isotopic Characteristics of Granitics in the Khangai Zonal Magmatic Area. Petrology. v. 24(5), p. 468-498. https://doi.org/10.1134/S0869591116050064

Downloads

Published

2023-04-03

How to Cite

Tungalag, N., Ganbat, B., Baasansuren, S., Orgil, G., Enkhhtsatsral, D., & Batmunkh, M. (2023). The Paleozoic Granitic Rocks from the Telmen Complex in the Tarvagatai Block, Central Mongolia: Petrogenesis, U-Pb geochronology, and its tectonic implications. Mongolian Geoscientist, 28(56), 1–13. https://doi.org/10.5564/mgs.v28i56.2427

Issue

Section

Articles