Tectonic evolution of a sequence of related late Permian transtensive coal-bearing sub-basins, Mongolia: A global wrench tectonics portrait
DOI:
https://doi.org/10.5564/mgs.v28i57.3200Keywords:
Mongol-Transbaikalian Seaway, South Gobi Basin, Sulinkheer Suture Zone, Permian-Triassic boundary, tectonic superimposition, depositional dynamicsAbstract
During the late Permian in Mongolia, inertia-driven transtensive reactivation of primordial fracture zones gave rise to the development of a sequence of related, but isolated, fault-bounded sub-basins; some of these became the locus of substantial peat accumulation that evolved into economically important coal deposits. The present study focuses on late Permian coal measures in two widely separated areas: Area 1: located in central Mongolia, developed along the southern margin of the Mongol-Transbaikalian Seaway. The late Permian coal sequence forms a c. 420 m thick middle part of a Permo-Triassic succession which spans c. 2,600 m. The V-shaped, fault-bounded NE oriented sub-basin evolved under transtensive conditions. The thick infill records a transition from shallow marine and humid coal forming depositional environments during the late Permian to relatively arid desolate terrestrial conditions during early Triassic times, considered here to mark the dramatic drainage of the Mongol-Transbaikalian Seaway across the Permo-Triassic boundary. Area 2: situated in southern Mongolia, is a NE oriented elongate sub-basin, bounded by two wrench faults, which formed under transtensive conditions. Thickness of the late Permian coal-bearing strata is c. 650 m. The sedimentary strata record a transition from a humid coal-bearing environment to predominantly marine conditions. Both study areas are located proximal to two controversial suture zones. However, the zones do not show the presumed shortening, major thrusting, regional metamorphism and given the complete absence of tuffs within the studied Permo-Triassic successions it could be argued that the sutures are not only cryptic but non-existent.
Downloads
695
References
Ade-Hall, J.M. 1969. Opaque petrology and the stability of natural remanent magnetism in basaltic rocks. Geophysical Journal International, v. 18(1), p. 93-107. https://doi.org/10.1111/j.1365-246X.1969.tb00265.x
Augland, L.E., Ryabov, V.V., Vernikovsky, V.A. Planke, S., Polozov, A.G., Callegaro, S., Jerram, D.A. Svensen, H.H. 2019. The main pulse of the Siberian Traps expanded in size and composition. Scientific Reports, v. 9, 18723. https://doi.org/10.1038/s41598-019-54023-2
Aumento, F., Melson, W.G., Hall, J.M., Bougault, H., Dmitriev, L., Fischer, J.F., Flower, M., Howe, R.C., Hyndman, R.D., Miles, G.A., Robinson, P.T., Wright, T.L. 1977. Initial Reports of the Deep Sea Drilling Project, v. 37. Washington U.S. Government Printing Office. p. 1008. https://doi.org/10.2973/dsdp.proc.37.1977
Austrheim, H. 1987. Eclogitization of lower crustal granulites by fluid migration through shear zones. Earth and Planetary Science Letters, v. 81, p. 221-232. https://doi.org/10.1016/0012-821X(87)90158-0
Austrheim, H. 1990. The granulite-eclogite facies transition: A comparison of experimental work and a natural occurrence in the Bergen Arcs, western Norway. Lithos, v. 25, p. 163-169. https://doi.org/10.1016/0024-4937(90)90012-P
Austrheim, H. 1998. Influence of fluid and deformation on metamorphism of the deep crust and consequences for the geodynamics of collision zones. In: Geodynamics and Geochemistry of Ultrahigh-pressure Rocks. Dordrecht, Kluwer Academic. 325 p. https://doi.org/10.1007/978-94-015-9050-1_12
Badarch, G., Dickson Cunningham, W., Windley, B.F. 2002. A new terrane subdivision for Mongolia: implications for the Phanerozoic crustal growth of Central Asia. Journal of Asian Earth Sciences, v. 21, p. 87-110. https://doi.org/10.1016/S1367-9120(02)00017-2
Barrell, J. 1927. On continental fragmentation and the geologic bearing of the Moon's surface features. American Journal of Science, v. 213, p. 283-314. https://doi.org/10.2475/ajs.s5-13.76.283
Barry, T. L., Saunders, A.D., Kempton, P.D., Windley, B.F., Pringle, M.S., Dordjnamjaa, D., Sandar, S. 2003. Petrogenesis of Cenozoic basalts from Mongolia: Evidence for the role of asthenospheric versus metasomatized lithospheric mantle sources. Journal of Petrology, v. 44(1), p. 55-91. https://doi.org/10.1093/petrology/44.1.55
Bayasgalan, A., Jackson, J., Ritz, J.F., Cartier, S. 1999. Field examples of strike-slip fault terminations in Mongolia, and their tectonic significance, Tectonics, v.18(3), p. 394-411. https://doi.org/10.1029/1999TC900007
Belissent-Funel, M.-C. 2001. Structure of supercritical water. Journal of Molecular Liquids, v. 90, p. 313-322. https://doi.org/10.1016/S0167-7322(01)00135-0
Benkhelil, J., Dainelli, P., Ponsard, J.F., Popoff, M., Saugy, L. 1988. The Benue Trough: Wrench fault related basin, on the border of Equatorial Atlantic. In: Triassic-Jurassic Rifting-Continental Breakup and the Origin of the Atlantic Ocean and Passive Margins. Amsterdam, Elsevier. https://doi.org/10.1016/B978-0-444-42903-2.50037-3
Biakov, A.S, Goryacheva, N.A., Davydovb, V.I., Vedernikova, I.L. 2013. The First Finds of Glendonite in Permian Deposits of the North Okhotsk Region, Northeastern Asia. Doklady Earth Sciences, v. 451(3), p. 716-718. https://doi.org/10.1134/S1028334X13070210
Binks, R.M., Fairhead, J.D. 1992. A plate tectonic setting for Mesozoic rifts of West and Central Africa. Tectonophysics, v. 213, p. 141-151. https://doi.org/10.1016/B978-0-444-89912-5.50034-X
Bonatti, E. 1976. Serpentinite protrusion in the oceanic crust. Earth and Planetary Science Letters, v. 32, p. 107-113. https://doi.org/10.1016/0012-821X(76)90048-0
Bonatti, E. 1978. Vertical tectonism in oceanic fracture zones. Earth and Planetary Science Letters, v. 37, p. 369-379. https://doi.org/10.1016/0012-821X(78)90052-3
Bonatti, E., Chermak, A. 1981. Formerly emerging crustal block in the equatorial Atlantic. Tectonophysics, v. 72(3-4), p. 165-180. https://doi.org/10.1016/0040-1951(81)90237-7
Bonatti, E., Honnorez, J. 1976. Sections of the earth's crust in the equatorial Atlantic. Journal of Geophysical Research, v. 81(23), p. 4104-4116. https://doi.org/10.1029/JB081i023p04104
Bonatti, E., Sarnthein, M., Boersma, A., Gorini, M., Honnorez, J. 1977. Neogene crustal emersion and subsidence at the Romanche fracture zone, equatorial Atlantic. Earth and Planetary Science Letters, v. 35, p. 369-383. https://doi.org/10.1016/0012-821X(77)90071-1
Bond, G. 1978. Evidence for late Tertiary uplift of Africa relative to North America, South America, Australia, and Europe. The Journal of Geology, v. 86, p. 47-65. https://doi.org/10.1086/649655
Boucot, A.J., Johnson, J.G. 1973. Silurian Brachiopods. In: Atlas of Palaeogeography. Amsterdam: Elsevier
Brand, U., Posenato, R., Came, R.E., Affek, H., Angiolini, L., Azmy, K., Farabegoli, E. 2012. The end-Permian mass extinction: a rapid volcanic CO2 and CH4-climatic catastrophe. Chemical Geology, v. 322-323, p. 121-144. https://doi.org/10.1016/j.chemgeo.2012.06.015
Brookfield, M.E. 1977. The emplacement of giant ophiolite nappes; Mesozoic-Cenozoic examples. Tectonophysics, v. 37, p. 247-303. https://doi.org/10.1016/0040-1951(77)90053-1
Cai, Y.F., Zhang, H., Feng, Z., Gou, X.D., Byambajav, U. Zhang, Y.C., Yuan, D.X., Qie, W.K., Xu, H.P., Cao, C.Q., Yarinphil, A., Shen, S.Z. 2022. A newconifer stem, Ductoagathoxylon tsaaganensis, from the Upper Permian of the South Gobi Basin, Mongolia and its palaeoclimatic and palaeoecological implications. Review of Palaeobotany and Palynology v. 304, p. 1-12. https://doi.org/10.1016/j.revpalbo.2022.104719
Calais, E., Vergnolle, M., San'kov, V., Lukhnev, A. et al., Miroshnitchenko, A., Amarjargal, S., Déverchère, J. 2003. GPS measurements of crustal deformation in the Baikal-Mongolia area (1994-2002): Implications for current kinematics of Asia. Journal of Geophysical Research, v. 108 (B10), p.ETG 14-1. https://doi.org/10.1029/2002JB002373
Cann, J.R., Vine, F.J. 1966. An area of the crest of the Carlsberg Ridge: Petrology and magnetic survey. Philosophical Transactions of the Royal Society of London, A259, p. 198-217. https://doi.org/10.1098/rsta.1966.0007
Cannat, M. 1993. Emplacement of mantle rocks in the seafloor at mid-ocean ridges. Journal of Geophysical Research, v. 98, p. 4163-4172. https://doi.org/10.1029/92JB02221
Cannat, M., Karson, J.A., Miller, D.J. et al. 1995. Initial Reports of the Ocean Drilling Program, v. 153. Washington, D.C., U.S. Govt. Print. Office.
Carey, S.W. 2000. Earth, Universe, Cosmos. University of Tasmania Press. Second Edition, 258 pp.
Chen, M., Niu, F., Liu, Q., Tromp, J. 2015. Mantle-driven uplift of Hangai Dome: New seismic constraints from adjoint tomography. Geophysical Research Letters, v. 42(17), p. 6967-6974. https://doi.org/10.1002/2015GL065018
Chernysheva, V.I., Murdmaa, I.O. 1971. Metamorphosed igneous rocks from the Mid-Indian rift zones. Philosophical Transactions of the Royal Society of London, A268, p. 621 (abstract). https://doi.org/10.1098/rsta.1971.0017
Choi, D.R. 1987. Continental crust under the NW Pacific Ocean. Journal of Petroleum Geology, v. 10(4), p. 425-440. https://doi.org/10.1111/j.1747-5457.1987.tb00583.x
Choi, D.R., Vasil'yev, B.I., Bhat, M.I. 1992. Paleoland, crustal structure, and composition under the northwestern Pacific Ocean. In: New Concepts in Global Tectonics. Lubbock, Texas Tech University Press, p. 179-191.
Choi, D.R., Vasil'yev, B.I., Tuezov, I.K. 1990. The Great Oyashio paleoland: A Palaeozoic-Mesozoic landmass in the northwestern Pacific. In: Barto-Kyriakidis, A. (Ed.) Critical Aspects of the Plate Tectonic Theory (v. 1, p. 197-213). Athens, Greece, Theophrastus Publications, S.A.
Christensen, N.I. 1972. The abundance serpentinites in the oceanic crust. The Journal of Geology, v. 80, p. 709-719. https://doi.org/10.1086/627796
Chu, R., Zhu, L., Helmberger, D.V. 2009. Determinations of earthquake focal depths and source time functions in central Asia using teleseismic P-waveforms. Geophysical Research Letters, v. 36(1), L17605. https://doi.org/10.1029/2009GL039494
Collins, L.G. 1992. Rock transformation in situ: Mafic to felsic. In: Expanding Geospheres. Energy and Mass Transfers from Earth's Interior. Calgary, Polar Publishing, 421 p.
Creer, K.M. 1975. On a tentative correlation between changes in the geomagnetic polarity bias and reversal frequency and the Earth's rotation through Phanerozoic time. In: Growth Rhythms and The Earth's rotation. London: John Wiley.
Cunningham, W.D. 1998. Lithospheric controls on late Cenozoic construction of the Mongolian Altai. Tectonics, v. 17, p. 891-902. https://doi.org/10.1029/1998TC900001
Droop, G.T.R., Lombardo, B., Pognante, U. 1990. Formation and distribution of eclogite facies rocks in the Alps. In: Eclogite Facies Rocks. Glasgow, Blackie. https://doi.org/10.1007/978-94-010-9263-0_10
Du Toit, A. 1927. A geological comparison of South America with Africa. Publ. of the Carnegie Institution of Washington, No. 381. Washington, D.C., Carnegie Institution of Washington.
Durante, M.V. 1976. The Paleobotanical Basis for Stratigraphy of the Carboniferous and Permian of Mongolia. Proceedings of the Joint Soviet-Mongolian Geological Expedition, v. 19, 380 p. (in Russian)
Dziewonski, A.M. 1984. Mapping of the lower mantle: determination of lateral heterogeneity in P velocity up to degree and order 6. Journal of Geophysical Research: Solid Earth, v. 89(B7), p. 5929-5952. https://doi.org/10.1029/JB089iB07p05929
Dziewonski, A.M., Woodhouse, J.H. 1987. Global images of the Earth's interior. Science, v. 236, p. 37-48. https://doi.org/10.1126/science.236.4797.37
Elderfield, H. 2000. From greenhouse to icehouse, across the Eocene-Oligocene boundary. Nature, v. 407, p. 851-852. https://doi.org/10.1038/35038196
Erdenetsogt, B.O., Lee, I., Bat-Erdene, D., Jargal, L. 2009. Mongolian coal-bearing basins: Geological settings, coal characteristics, distribution, and resources. International Journal of Coal Geology, v. 80, p. 87-104. https://doi.org/10.1016/j.coal.2009.08.002
Erkhembaatar, H., Dorjsuren, B., Myagmarsuren, A. 1995. Geology research mapping report, 4825.
Ernst, W.G. 1972. Occurrence and mineralogic evolution of blueschist belts with time. American Journal of Science, 272(7), p. 657-668. https://doi.org/10.2475/ajs.272.7.657
Erwin, D.H. 1993. The Great Paleozoic Crisis. Columbia University Press, New York.
Erwin, D.H. 1994. The Permo-Triassic extinction. Nature, v. 367, p. 231-236. https://doi.org/10.1038/367231a0
Ewing, J., Ewing, M. 1967. Sediment distribution on the mid-ocean ridges with respect to spreading of the sea floor. Science, v. 156, p. 1590-1592. https://doi.org/10.1126/science.156.3782.1590
Feng, L. 2021. High-resolution crustal and uppermost mantle structure beneath Central Mongolia from Rayleigh waves and receiver functions. Journal of Geophysical Research: Solid Earth, v. 126. https://doi.org/10.1029/2020JB021161
Fetisova, A.M., Veselovskiy, R.V., Golubev, V.K. 2023. A New 254 Ma Paleomagnetic Pole of the East European Platform: The Moscow Syneclise, the Sukhorka and Sosnovka Sections. Doklady Earth Sciences, v. 510, p. 475-480. https://doi.org/10.1134/S1028334X2360038X
Forsberg, R., Olesen, A., Munkhtsetseg, D., Amarzaya, B. 2007. Downward continuation and geoid determination in Mongolia from airborne and surface gravimetry and SRTM topography. Conference: Strategic Technology, 2007. IFOST, p 1-6. https://doi.org/10.1109/IFOST.2007.4798634
Forte, A.M., Dziewonski, A.M., O'Connell, R.J. 1995. Continent-ocean chemical heterogeneity in the mantle based on seismic tomography, Science, v. 268, p. 386-388. https://doi.org/10.1126/science.268.5209.386
Galli, G., Pan, D. 2013. A closer look at supercritical water. PNAS, v. 110, p. 6250-6251. https://doi.org/10.1073/pnas.1303740110
Ghienne, J.-F. 2003. Late Ordovician sedimentary environments, glacial cycles, and post-glacial transgression in the Taoudeni Basin, West Africa. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 189, p. 117-145. https://doi.org/10.1016/S0031-0182(02)00635-1
Gilbert, H.J., Sheehan, A.F. 2004. Images of crustal variations in the intermountain west. Journal of Geophysical Research, v. 109, B03306. https://doi.org/10.1029/2003JB002730
Gold, T. 1979. Terrestrial sources of carbon and earthquake outgassing. Journal of Petroleum Geology, v. 1, p. 3-19. https://doi.org/10.1111/j.1747-5457.1979.tb00616.x
Gold, T. 1985. The origin of natural gas and petroleum and the prognosis for future supplies. Annual Review of Energy, v. 10, p. 53-77. https://doi.org/10.1146/annurev.eg.10.110185.000413
Gold, T. 1987. Power from the Earth. Deep Earth Gas - Energy for the Future. London, J.M. Dent & Sons, 208 p.
Gold, T. 1999. The Deep Hot Biosphere. New York, Springer-Verlag, 235 p. https://doi.org/10.1007/978-1-4612-1400-7
Gold, T., Soter, S. 1980. The deep-earth gas hypothesis. Scientific American, v. 242, p. 154-161. https://doi.org/10.1038/scientificamerican0680-154
Gold, T., Soter, S. 1982. Abiogenic methane and the origin of petroleum. Energy Exploration and Exploitation, v. 1, p. 89-104. https://doi.org/10.1177/014459878200100202
Gregory, L.C. Mac Niocaill, C., Walker, R.T., Bayasgalan, G., Craig, T.J. 2018. Vertical axis rotation (or lack thereof) of the eastern Mongolian Altay Mountains: Implications for far-field transpressional mountain building. Тectonophysics, v. 736, p. 31-46. https://doi.org/10.1016/j.tecto.2018.03.020
Hall, J., Marillier, F., Dehler, S. 1998. Geophysical studies of the structure of the Appalachian orogen, in the Atlantic borderlands of Canada. Canadian Journal of Earth Sciences, v. 35, p. 1205-1221. https://doi.org/10.1139/e98-075
Hall, J.M., Robinson, P.Y. 1979. Deep crustal drilling in the North Atlantic Ocean. Science, v. 204, p. 573-586. https://doi.org/10.1126/science.204.4393.573
Hallam, A. 1992. Phanerozoic Sea-level Changes. New York, Columbia University Press, 266 p.
Hansen, H.J., Lojen, S., Toft, P., Dolenec,T., Jinan, T., Michaelsen, P. Sarkar, A. 2000. Magnetic susceptibility and organic carbon isotopes of sediments across some marine and terrestrial Permo-Triassic boundaries. In: Permian-Triassic Evolution of Tethys and Western Circum-Pacific. Yin, H., Dickins, J.M., Shi, G.R., Tong. J. (Eds.). Elsevier, Amsterdam, p. 271- 289. https://doi.org/10.1016/S0920-5446(00)80016-3
Hay, W.W., Soeding, E., DeCanto, R.M., Wold, C.N. 2002. The Late Cenozoic uplift - climatic change paradox. International Journal of Earth Sciences, v. 91, p. 746-774. https://doi.org/10.1007/s00531-002-0263-1
Henley, R.W., Mernagh, T. Leys, C. Troitzsch, U. Bevitt, J. Brink, F., Gardner, J., Knuefing, L., Wheeler, J., Limaye, A., Turner, M., Zhang, Y. 2022. Potassium silicate alteration in porphyry copper‑gold deposits: a case study at the giant maar-diatreme hosted Grasberg deposit, Indonesia. Journal of Volcanology and Geothermal Research, v. 432, p. 1-20. https://doi.org/10.1016/j.jvolgeores.2022.107710
Hirschmann, M., Kolstedt, D. 2012. Water in Earth's mantle. Physics Today, v. 65, p. 40-45. https://doi.org/10.1063/PT.3.1476
Hovland, M., Fichler, C., Rueslåtten, H., Johnsen, H.K. 2006. Deep-rooted piercement structures in deep sedimentary basins - Manifestations of supercritical water generation at depth? Journal Geochemical Exploration, v. 89, p. 157-160. https://doi.org/10.1016/j.gexplo.2005.11.056
Hoyle, F. 1955. Frontiers of Astronomy. London, Heinemann.
Hunt, A.C., Parkinson, I.J., Harris, N.B.W., Barry, T.L., Rogers, N.W., Yondon, M. 2012. Cenozoic Volcanism on the Hangai Dome, Central Mongolia: Geochemical Evidence for Changing Melt Sources and Implications for Mechanisms of Melting. Journal of Petrology, v, 53(9), p. 1913-1942. https://doi.org/10.1093/petrology/egs038
Hunt, C.W. 2001. Dual geospheres; oxidic carapace: hydridic interior. New Concepts in Global Tectonics Newsletter. No. 21, 4-10.
Hunt, C.W., Collins, L., Skobelin, E.A. 1992. Expanding Geospheres. Energy and Mass Transfers from Earth's Interior. Calgary, Polar Publishing, 421 p.
Isbell, J.L., Miller, M.F., Wolfe K.L., Lenaker, P.A. 2003. Timing of late Paleozoic glaciation in Gondwana: Was glaciation responsible for the development of northern hemisphere cyclothems? In: M. A. Chan and A. A. Archer, eds., Extreme Depositional Environments: Mega End Members in Geologic Time, Geological Society of America Special Paper, v. 370, p. 5-24. https://doi.org/10.1130/0-8137-2370-1.5
Ito, T., Zoback, M. 2000. Fracture permeability and in situ stress at 7 km depth in the KTB scientific drillhole. Geophysical Research Letters, v. 27, p. 1045-1048. https://doi.org/10.1029/1999GL011068
Ivanov, A.V., Demonterova, E.L., He, H., Perepelov, A.B., Travin, A.V., Lebedev, V.A. 2015. Volcanism in the Baikal rift: 40 years of active-versus-passive model discussion. Earth-Science Reviews, v. 148, p. 18-43. https://doi.org/10.1016/j.earscirev.2015.05.011
James, K. 2018. Not written in stone, plate tectonics at 50. AAPG Explorer, v. 2, p. 18-23.
Japsen, P., Chalmers, J.A. 2022. The Norwegian mountains: the result of multiple episodes of uplift and subsidence. Geology Today, v. 38, p. 13-19. https://doi.org/10.1111/gto.12377
Johnson, C.L., Amory, J.A., Zinniker, D., Lamb, M.A., Graham, S.A., Affolter, M., Badarch, G. 2007. Sedimentary response to arc-continent collision, Permian, southern Mongolia. In: Draut, A., Clift, P., and Scholl, D., eds., Formation and Applications of the Sedimentary Record in Arc Collision Zones: Geological Society of America Special Papers, v. 436, p. 1-26. https://doi.org/10.1130/2008.2436(16)
Jordan, T.H. 1975. The Continental Tectosphere. Reviews of Geophysics, v. 13(3), p. 1-12. https://doi.org/10.1029/RG013i003p00001
Jordan, T.H. 1979. The deep structure of continents. Scientific American, v. 240, p. 92-107. https://doi.org/10.1038/scientificamerican0179-92
Keating, B.H., Sakai, H. 1988. Red beds in Antarctica - ODP Leg 119. EOS, v. 69, p. 1161.
Keller, G.R., Snelson, C.M., Sheehan, A.F., Dueker, K.G. 1998. Geophysical studies of crustal structure in the Rocky Mountain region: A review. Rocky Mountain Geology, v. 33, p. 217-228. https://doi.org/10.2113/33.2.217
Kelley, D.S., Karson, J.A., Blackman, D.K., Früh-Green, G.L., Butterfield, D.A., Lilley, M.D., Olson, E.J., Schrenk, M.O., Roe, K.K., Lebon, G.T., Rivizzigno, P. 2001. An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30°N. Nature, v. 412, p. 145-149. https://doi.org/10.1038/35084000
Kenvolden, K.A. 1988. Methane hydrate - A major reservoir of carbon in the shallow geosphere? Chemical geology, v. 71, p. 41-51. https://doi.org/10.1016/0009-2541(88)90104-0
Khasmaral, T., Amarjargal, B., Miao, L., Munkhtsengel, B., Chimedtseren, A. 2019. Geochemical comparison of late Mesozoic and early Cenozoic volcanic rocks in South Mongolia: Implications for petrogenesis and geodynamic evolution. Mongolian Geoscientist, v. 49, p. 3-21. https://doi.org/10.5564/mgs.v0i49.1223
Kilian, T.M., Swanson-Hysell, N.L., Bold, U., Crowley, J., Macdonald, F.A. 2016. Paleomagnetism of the Teel basalts from the Zavkhan terrane: Implications for Paleozoic paleogeography in Mongolia and the growth of continental crust. Lithosphere, v. 8(6), p. 699-715. https://doi.org/10.1130/L552.1
Koning, T. 2003. Oil and gas production from basement reservoirs: examples from Indonesia, USA and Venezuela. In: Hydrocarbons in Crystalline Rocks. Geological Society, London, Special Publications 214. https://doi.org/10.1144/GSL.SP.2003.214.01.05
Kozlovsky, Y.A. 1984. The Superdeep Well of the Kola Peninsula. Moscow, Ministry of Geology of the USSR, 558 p.
Krauskopf, K.B. 1982. Introduction to Geochemistry. London, McGraw-Hill, 650 p.
Kreichgauer, D. 1902. Die Äquatorfrage in der Geologie. Steyl, Missionsdruckerei, 304 p.
Kuhn, T.S. 1970. The Structure of Scientific Revolutions. University of Chicago Press, 210 p.
Le Heron, D.P., El Houicha, M., Ghienne, J.-F., Khoukhi, Y. 2007. Maximum extent of ice sheets in Morocco during the Late Ordovician glaciation. Palaeography, Palaeoclimatology, Palaeoecology, v. 245, p. 200-226. https://doi.org/10.1016/j.palaeo.2006.02.031
Le Heron, D.P., Howard, J. 2010. Evidence for Late Ordovician glaciation of Al Kufrah Basin, Libya. Journal of African Earth Sciences, v. 58, p. 354-364. https://doi.org/10.1016/j.jafrearsci.2010.04.001
Leech, M.I. 2001. Arrested orogenic development: eclogitization, delamination, and tectonic collapse. Earth and Planetary Science Letters, v. 185, p. 149-159. https://doi.org/10.1016/S0012-821X(00)00374-5
Levashova, N.M., Degtyarev, K.E., Bazhenov, M.L. Collins, A.Q., van der Voo, R. 2003. Permian palaeomagnetism of East Kazakhstan and the amalgamation of Eurasia. Geophysical Journal International, v. 152(3), p. 677-687. https://doi.org/10.1046/j.1365-246X.2003.01879.x
Li, M., Ogg, J., Zhang, Y., Huang, C. 2016. Astronomical tuning of the end-Permian extinction and the Early Triassic Epoch of South China and Germany. Earth and Planetary Science Letters, v. 441, p. 10-25. https://doi.org/10.1016/j.epsl.2016.02.017
Liebscher, A. 2010. Aqueous fluids at elevated pressure and temperature. Geofluids, v. 10, p. 3-19. https://doi.org/10.1002/9781444394900.ch2
Lowenstam, H.A. 1964. Palaeotemperatures of the Permian and Cretaceous Periods. In: Problems in Palaeoclimatology. London, Interscience Publishers, p. 227-248.
Luyendyk, B.P., Melson, W.G. 1967. Magnetic properties and petrology of rocks near the crest of the mid-Atlantic Ridge. Nature, v. 215, p. 147-149. https://doi.org/10.1038/215147a0
MacDonald, G.J.F. 1964. The deep structure of continents. Science, v. 143, p. 921-929. https://doi.org/10.1126/science.143.3609.921
Malvoisin, B., Auzende, A.-L., Keleman, P.B. 2021. Nanostructure of serpentinization products: importance for water transport and low-temperature alteration. Earth and Planetary Science Letters, v. 576, p. 117212. https://doi.org/10.1016/j.epsl.2021.117212
Manankov, I.N. 1999. Reference section and upper Permian zonation in Southeastern Mongolia. Stratigrafia i Geologicheskaya Korrelyatsia, v. 7(1), p. 56-65.
Manankov, I.N. 1998. Late Permian productida (Brachiopoda) from southeastern Mongolia: Paleontological Journal, v. 32, p. 486-492.
Manankov, I.N. 2004. New species of Early Permian brachiopods and biostratigraphy of the Boreal basin of Mongolia. Paleontological Journal, v. 38(4), p. 366-372.
Manankov, I.N. 2012. Brachiopods, biostratigraphy, and correlation of the Permian marine deposits of Mongolia. Paleontological Journal, v. 46(12), p. 1325-1349. https://doi.org/10.1134/S0031030112120040
Manankov, I.N., Shi, G.R., Shen, S.Z. 2006. An overview of Permian marine stratigraphy and biostratigraphy of Mongolia. Journal of Asian Earth Sciences, v. 26, p. 294-303. https://doi.org/10.1016/j.jseaes.2005.11.008
Margolis, H. 1993. Paradigms and Barriers. Chicago, The Univ. Chicago Press. 267 p.
Markl, G., Bucher, K. 1998. Composition of fluids in the lower crust inferred from metamorphic salt in lower crustal rocks. Nature, v. 391, p. 781-783. https://doi.org/10.1038/35836
Mart, Y. 2022. Serpentinite Diapirs and the Evolution of Oceanic Core Complexes. Environmental Sciences and Ecology: Current Research (ESECR), v.3, p. 1-7. https://doi.org/10.54026/ESECR/1054
McLoughlin, S. 2011. Glossopteris - insights into the architecture and relationships of an iconic Permian Gondwanan plant*. Journal of Botanical Society of Bengal, v. 65(2), p. 1-14.
Melson, W.G., Hart, S.R., Thompson, G. 1972. St. Paul's Rocks, Equatorial Atlantic: petrogenesis, radiometric ages, and implications on seafloor spreading. The Geological Society of America, Inc. Memoir, v. 132, p. 241-272. https://doi.org/10.1130/MEM132-p241
Melton, C.E. and Giardini, A.A. 1974. The composition and significance of gas released from natural diamonds from Africa and Brazil. American Mineralogist, v. 59, p. 775-782.
Michaelsen, P. 2002. Mass extinction of peat-forming plants and the effect on fluvial styles across the Permo-Triassic boundary, Bowen Basin, Australia. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 179, p. 173-188. https://doi.org/10.1016/S0031-0182(01)00413-8
Michaelsen, P. 2016. Late Permian coal formation under boreal conditions along the shores of the Mongol-Transbaikalian seaway. New Concepts in Global Tectonics Journal, v. 4(4), p. 615-636.
Michaelsen, P., Foster, C.B., Henderson, R.A. 1999. Destabilization and collapse of a long- lived (c. 9My) peat mire ecosystem and dramatic changes of alluvial architecture: Permian- Triassic boundary, northern Bowen Basin, Australia. Yin, H. & Tong, J. (eds.), International conference on Pangea and the Paleozoic-Mesozoic transition, Wuhan, China, 9-11 March, 1999, p. 137-140.
Michaelsen, P., Henderson, R.A. 2000a. Facies relationships and cyclicity of high-latitude, Late Permian coal measures, Bowen Basin, Australia. International Journal of Coal Geology, v. 44(1), p. 19-48. https://doi.org/10.1016/S0166-5162(99)00048-8
Michaelsen, P., Henderson, R.A. 2000b. Sandstone petrofacies expressions of multiphase basinal tectonics and arc magmatism: Permian-Triassic north Bowen Basin, Australia. Sedimentary Geology, v. 136, p. 113-136. https://doi.org/10.1016/S0037-0738(00)00090-7
Michaelsen, P., Henderson, R.A., Crosdale, P.J., Fanning, C.M. 2001. Age and significance of the Platypus-Tuff Bed, a regional reference horizon in the Upper Permian Moranbah Coal Measures, north Bowen Basin. Australian Journal of Earth Sciences, v. 48, p. 183- 192. https://doi.org/10.1046/j.1440-0952.2001.00854.x
Michaelsen, P., Henderson, R.A., Crosdale, P.J., Mikkelsen, S.O. 2000. Facies architecture and depositional dynamics of the Upper Permian Rangal Coal Measures, Bowen Basin, Australia. Journal of Sedimentary Research, v. 70(4), p. 879-895. https://doi.org/10.1306/2DC4093F-0E47-11D7-8643000102C1865D
Michaelsen, P., Storetvedt, K.M. (in prep). Sedimentary basins, hydrocarbons and Au-Cu-Mo ore deposits - from Mongolia to the Pacific margin: Interplay between the ubiquitous orthogonal fracture network and Global Wrench Tectonics.
Milkov, A.V. 2000. Worldwide distribution of submarine mud volcanoes and associated gas hydrates. Marine Geology. v. 167(1-2). p. 29-42. https://doi.org/10.1016/S0025-3227(00)00022-0
Mordvinova, V.V., Deschamps, A., Dugarmaa, T., Déverchère, J., Munkhuu, U., San'kov, V., Artem’ev, A.A., Perrot, J. 2007. Velocity structure of the lithosphere on the 2003 Mongolian-Baikal transect from SV waves. Izvestiya, Physics of the Solid Earth, v. 43, p. 119-129. https://doi.org/10.1134/S1069351307020036
Mordvinova, V.V., Treussov, A.V., Turutanov, E.K. 2015. Nature of the mantle plume under Hangai (Mongolia) based on seismic and gravimetric data. Doklady Earth Sciences, v. 460(1), p. 92-95. https://doi.org/10.1134/S1028334X15010201
Morelli, A., Dziewonski, A.M. 1987. Topography of the core-mantle boundary and lateral homogeneity of the liquid core. Nature, v. 325, p. 678-683. https://doi.org/10.1038/325678a0
Naugolnykh, S.V., Uranbileg, L. 2018. A new discovery of Glossopteris in southeastern Mongolia as an argument for distant migration of Gondwanan plants. Journal of Asian Earth Sciences, v. 154, p. 142-148. https://doi.org/10.1016/j.jseaes.2017.11.039
Newton, R.C., Manning, C.E. 2008. Thermodynamics of SiO2-H2O fluid near the upper critical end point from quartz solubility measurements at 10 kbar. Earth and Planetary Science Letters, v. 274, p. 241-249. https://doi.org/10.1016/j.epsl.2008.07.028
Newton, R.C., Manning, C.E. 2010. Role of saline fluids in deep-crustal and upper-mantle metasomatism: insights from experimental studies. Geofluids, v. 10, p. 58-71. https://doi.org/10.1002/9781444394900.ch5
Okuchi, T. 1997. Hydrogen partitioning into molten iron at high pressure: implications for Earth's core. Science, v. 278, p. 1781-1784. https://doi.org/10.1126/science.278.5344.1781
Ollier, C. 1992. A hypothesis about antecedent and reversed drainage. Geografia Fisica Dinamica Quaternaria, v. 14, p. 243-246.
Ollier, C. 2006. Mountain uplift and the Neo-tectonic Period. Annals of Geophysics, v. 49(1), p. 437-450.
Ollier, C., Pain, C. 2000. The origin of mountains. London: Routledge, 345 p.
Opdyke, N.D., Hekinian, R. 1967. Magnetic properties of some igneous rocks from the Mid-Atlantic Ridge, Journal of Geophysysical Research, v. 72, p. 2257-2260. https://doi.org/10.1029/JZ072i008p02257
Orolmaa, D., Uranbileg, L., Badarch, G. 1999. Stratigraphic questions of coal-bearing deposits in the vicinity of the spring Yamaan-Us bulag. Mongolian Geoscientist, v. 14, p. 2-8.
Pan, D., Spanu, L., Harrison, B., Galli, G. 2013. Dielectric properties of water under extreme conditions and transport of carbonates in the deep Earth. PNAS, v. 110, p. 6646-6650. https://doi.org/10.1073/pnas.1221581110
Pavlenkova, N.I. 1991. The Kola Superdeep Drillhole and the nature of the seismic boundaries. Terra Nova, v. 4, p. 117-123. https://doi.org/10.1111/j.1365-3121.1992.tb00456.x
Pedersen, G.K., Pedersen, S.A.S., Bonde, N., Heilmann-Clausen, C., Larsen, L.M., Lindow, B.E.K., Madsen, H., Pedersen, A.K., Rust, J., Schultz, B.P., Store, Y., Willumsen, P.S. 2011. Molerområdets geologi - sedimenter, fossiler, askelag og glacialtektonik. Geologisk Tidsskrift, p. 41-135.
Peizhen. Z, Molnar, P., Downs, W.R. 2001. Increased sedimentation rates and grain sizes 2-4 Myr ago due to the influence of climate change on erosion rates. Nature, v. 410, p. 891-897. https://doi.org/10.1038/35073504
Petford, N., McCaffrey, K. 2003. Hydrocarbons in crystalline rocks: an introduction. In: Hydrocarbons in Crystalline Rocks. Geological Society, London, Special Publications, v. 214. https://doi.org/10.1144/GSL.SP.2003.214.01.01
Pilot, J., Werner, C.D., Haubrich, F., Baumann, N. 1998. Palaeozoic and Proterozoic zircons from the Mid-Atlantic Ridge. Nature, v. 393, p. 676-679. https://doi.org/10.1038/31452
Poirier, J.-P. 2000. Introduction to the Physics of the Earth's Interior. Cambridge, Cambridge University Press, 312 p.
Pomerol, C. 1982. The Cenozoic Era. Chichester (UK): Ellis Harwood Ltd., 272 p.
Popper, K.R. 1990. A World of Propensities. Bristol, Thoemmes Press, 51 p.
Pratt, D. 2000. Plate tectonics: A paradigm under threat. Journal of Scientific Exploration, v. 14, p. 307-352.
Radziminovich, N.A., Bayar, G., Miroshichenko, A.I., Demberel, S., Ulziibat, M., Ganzorig, D., Lukhnev, A.V. 2016. Focal mechanisms of earthquakes and stress field of the crust in Mongolia and its surroundings. Geodynamics & Tectonophysics, v. 7(1), p. 23-38. https://doi.org/10.5800/GT-2016-7-1-0195
Rampino, M.R., Prokoph, A., Adler, A. 2000. Tempo of the end-Permian event: High- resolution cyclostratigraphy at the Permian-Triassic boundary. Geology, v. 28(7), p. 643-646. https://doi.org/10.1130/0091-7613(2000)028<0643:TOTEPE>2.3.CO;2
Retallack, G.J. 2013. Permian and Triassic greenhouse crises. Gondwana Research, v. 24, p. 90-103. https://doi.org/10.1016/j.gr.2012.03.003
Reusch, H.H. 1901. Nogle bidrag til forstaaelsen af hvorledes Norges dale og fjelde er blevne til. Norges Geologiske Undersøkelse, v. 32, p. 124-263.
Rigby, J.F. 1969. The Lower Gondwana scene. Boletim Paranaense de Geociências, v. 27, p. 3-13.
Rigby, J.F. 1972. On Arberia White, and some related Lower Gondwana female fructifications. Palaeontology, v. 15, p. 108-120.
Rigby, J.F. 1978. Permian glossopterid and other cycadopsid fructifications from Queensland. Publications of the Geological Survey of Queensland 367, Palaeontological Paper, v. 41, p. 1-21.
Rigby, J.F. 2001. A review of the Early Permian flora from Papua (West New Guinea). In Faunal and Floral Migrations and Evolution in SE Asia-Australasia. Metcalfe, I., Smith, J.M.B., Morwood, M. & Davidson, I., eds. Balkema, Lisse, 85-95.
Rona, P.A., Baugault, H., Charlou, J.L., Appriou, P., Nelsen, T.A. Trefry, J.H., Eberhart, G.L., Barone, A., Needhan, H.D. 1992. Hydrothermal circulation, serpentinization, and degassing at the rift valley-fracture zone intersection; Mid-Atlantic Ridge near 15°, 45°W. Geology, v. 20, p. 783-786. https://doi.org/10.1130/0091-7613(1992)020<0783:HCSADA>2.3.CO;2
Rother, K., Storetvedt, K.M. 1991. Polyphase magnetization in Lower Carboniferous rocks of S. Scotland: palaeomagnetic and tectonic considerations. Physics of the Earth and Planetary Interiors, v. 67(3-4), p. 251-267. https://doi.org/10.1016/0031-9201(91)90022-A
Rouméjon, S., Cannat, M. 2014. Serpentinization of mantle-derived peridotites at mid-ocean ridges: Mesh texture development in the context of tectonic exhumation. Geochemistry, Geophysics, Geosystems, v. 15, p. 2354-2379. https://doi.org/10.1002/2013GC005148
Ruditch, E.M.1990. The World Ocean Without Spreading. Shallow-Water Facies of the World Ocean. In: Critical Aspects of the Plate Tectonic Theory. Athens, Greece, Theophrastus Publications, p. 343-395.
Russ. Acad. Sci. 1998. Homologues of rocks in the Kola Superdeep Borehole (KSDB) and on the surface. In: Proc. Apatity Workshop, 13-14 May 1998. Kola Science Center, of Russian Academy of Science.
Schienbein, P., Marx, D. 2020. Assessing the properties of supercritical water in terms of structural dynamics and electronic polarization effects. Physical Chemistry Chemical Physics, v. 22, p. 10462-10479. https://doi.org/10.1039/C9CP05610F
Sodnomsambuu, D., Klyuchevskii, A.V. 2017. Lithospheric stress in Mongolia, from earthquake source data. Geoscience Frontiers, v. 8, p. 1323-1337. https://doi.org/10.1016/j.gsf.2017.01.003
Spjeldnæs, N. 1961. Ordovician climatic zones. Norsk Geologisk Tidsskrift, v. 41, p. 45-77.
Stevenson, D.J. 1981. Models of the Earth's core. Science, v. 214, p. 611-619. https://doi.org/10.1126/science.214.4521.611
Storetvedt, K.M, Petersen, N. 1970. On Chemical Magnetization in Some Permian Lava Flows of Southern Norway. Zeitschrift für Geophysik, 36, 569-588.
Storetvedt, K.M. 1990. The Tethys Sea and the Alpine-Himalayan orogenic belt. Physicsof the Earth Planetary Interiors, v. 62(1-2), p. 141-184. https://doi.org/10.1016/0031-9201(90)90198-7
Storetvedt, K.M. 1992. Rotating plates. In: New Concepts in Global Tectonics, Lubbock, Texas Tech. University Press, p. 202-220.
Storetvedt, K.M. 1997. Our Evolving Planet. Bergen, Alma Mater, 456 p.
Storetvedt, K.M. 2003. Global Wrench Tectonics. Bergen, Fagbokforlaget, 397 p.
Storetvedt, K.M. 2010. Falling Plate Tectonics - Rising new Paradigm: Salient Historical Facts and the Current Situation. New Concepts in Global Tectonics Newsletter, v. 55, p. 4-34.
Storetvedt, K.M. 2011. Aspects of Planetary Formation and the Precambrian Earth. New Concepts in Global Tectonics Newsletter, v. 59, p. 60-83.
Storetvedt, K.M. 2015. Mountain Ranges - A Newcomer in Earth History. New Concepts in Global Tectonics Journal, v. 3, p. 334-356.
Storetvedt, K.M. 2022. Vitenskapens fremste rivaler [Science's foremost rivals; habitual thinking, urban legends, and socio-political bribes]. Oslo, Kolofon, 538 p.
Storetvedt, K.M., Longhinos, B. 2011. Evolution of the north Atlantic: paradigm shift in the offing. New Concepts in Global Tectonics Newsletter, v. 59, p. 9-48.
Storetvedt, K.M., Longhinos, B. 2012. The Atlantic and its bordering continents - A wrench tectonic analysis: Lithospheric deformation, basin histories and major hydrocarbon provinces. New Concepts in Global Tectonics Newsletter, v. 64, p. 30-68.
Tiberi, C., Deschamps, A., Déverchère, Petit, C., Perrot, J., Appriou, A., Mordvinova, V.V., Dugaarma, T., Ulzibaat, M., Artemiev, A.A. 2008. Asthenospheric imprints on the lithosphere in Central Mongolia and Southern Siberia from a joint inversion of gravity and seismology (MOBAL experiment). Geophysical Journal International, v. 175(3), p. 1283-1297. https://doi.org/10.1111/j.1365-246X.2008.03947.x
Timofeev P.P., Ildintsev G.B., Agapova G.V., Antipov M.P., Boyko N.I., Kurentsova N.A., Luybimov V.V., Eremeev V.V. 1990. The Equatorial segment Mid-Atlantic ridge as possible structure barrier between North and South Atlantic. Doklady AN USSR. v. 312(4), p. 936-939. (in Russian).
Tong, J., Yin, J. 1999. A study on the Griesbachian cyclostratigraphy of Meishan Section, Changxing, Zhejiang Province. Journal of Stratigraphy, v. 23, p. 130-135.
Torsvik, T.H., Eide, E.A., Meert, J.G., Smethurst, M.A., Walderhauget, H.J. 1998. The Oslo Rift: new palaeomagnetic and Ar-40/Ar-39 age constraints. Geophysical Journal International, v. 135(3), p. 1045-1059. https://doi.org/10.1046/j.1365-246X.1998.00687.x
Tucker, M.E., Reid, P.C. 1973. The sedimentology and context of Late Ordovician glacial marine sediments from Sierra Leone, West Africa. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 13, p. 289-307. https://doi.org/10.1016/0031-0182(73)90030-8
Turekian, K.K. 1976. Oceans (2nd ed.). Englewood Cliff, Prentice-Hall, 170 p.
Tutolo, B.M., Luhmann, A.J., Tosca, N.J., Seyfried jr. W.E. 2018. Serpentinization as a reactive transport process. The brucite silification reaction. Earth and Planetary Science Letters, v. 484, p. 385-395. https://doi.org/10.1016/j.epsl.2017.12.029
Tutolo, B.M., Mildner, D.F.R., Gagnon, C.V.L., Saar, M.O., Seyfried, W.E. 2016. Nanoscale constraints on porosity generation and fluid flow during serpentinization. Geology, v. 44, p. 103-106. https://doi.org/10.1130/G37349.1
Umbgrove, J.H.F. 1942, 1947. The Pulse of the Earth. The Hague, Marinus Nijhoff, 385 p. https://doi.org/10.1007/978-94-017-6568-8
Vail, P.R., Mitchum, R.M., Todd, R.G., Widmier, J.M., Thompson, S., Songree, J.B., Budd, J.N., Hatlelid, W.G. 1977. Seismic stratigraphy and global changes of sea level. In, Seismic Stratigraphy--Applications to Hydrocarbon Exploration, Payton, C. E., ed.: American Association of Petroleum Geologists, Memoir 26, p. 49-212.
Van der Voo, R., Torsvik, T.H. 2004. The quality of the European-Triassic paleopoles. In: Timescales of the Paleomagnetic Field and its impact on Pangea reconstructions. Geophysical Monograph Series, v. 45, p. 29-42.
Veevers, J.J., Powell, C.McA., Collinson, J.W., Lopez Gamundi, O.R. 1994. Synthesis, In: Veevers, J.J., Powell, C.McA. Eds.., Permian-Triassic basins and foldbelts along the Panthalassan margin of Gondwanaland. Geological Society of America Memoir, v. 184, p. 331-353. https://doi.org/10.1130/MEM184-p331
Veselovskiy, R.V., Pavlov, V.E. 2006. New paleomagnetic data for the Permian-Triassic Trap rocks of Siberia and the problem of a non-dipole geomagnetic field at the Paleozoic-Mesozoic boundary. Russian Journal of Earth Sciences, v. 8, ES1002. https://doi.org/10.2205/2005ES000185
Vickers, M.L., Lengger, S.K., Bernasconi, S.M. et al. Thibault, N., Schultz, B.P., Fernandez, A., Ullmann, C.V., McCormack, P., Bjerrum, C.J., Rasmussen, J.A., Hougård, I.W., Korte, C. 2020. Cold spells in the Nordic Seas during the early Eocene Greenhouse. Nature Communications, v. 11(4713), p. 1-12. https://doi.org/10.1038/s41467-020-18558-7
Vine, F.J., Matthews, D.H. 1963. Magnetic anomalies over oceanic ridges. Nature, v. 199, p. 947-949. https://doi.org/10.1038/199947a0
Walther, J.V. 1994. Fluid-rock reactions during metamorphism at mid-crustal conditions. Journal of Geology, v. 102, 559-570. https://doi.org/10.1086/629698
Wegener, A. 1929/66. The Origin of Continents and Oceans. London, Methuen & Co. Ltd., 248 p.
Wegener, A.1928. Two notes concerning my theory of continental drift. In: Theory of Continental Drift. Tulsa OK, American Association of Petroleum Geologists, p. 97-103.
Wernicke, B., Clayton, R., Ducea, M. 1996. Origin of High Mountains in the Continents: The Southern Sierra Nevada. Science, v. 271, p. 190-193. https://doi.org/10.1126/science.271.5246.190
Wezel, F.-C. 1992a. Global change in Earth history: a personal point of view. Terra Nova, 4, 288-292. https://doi.org/10.1111/j.1365-3121.1992.tb00817.x
Wezel, F.-C. 1992b. From high plateau to marginal basins: the active role of the mantle. Terra Nova, 4, 329-339. https://doi.org/10.1111/j.1365-3121.1992.tb00822.x
Willis, B. 1932. Isthmian links. Bulletin of the Geological Society of America, v. 43, p. 917-952. https://doi.org/10.1130/GSAB-43-917
Yin, H., Zhang, K., Tong, J., Yang, Z., Wu, S. 2001. The Global Stratotype Section and Point (GSSP) of the Permo-Triassic boundary. Episodes, v. 24, p. 102-114. https://doi.org/10.18814/epiiugs/2001/v24i2/004
Zhang, L., Zhao, L-F., Xie, X-B., Wu, Q-J., Yao, Z-X. 2022. Lateral variations in crustal Lg attenuation in and around the Hangay Dome, Mongolia. International Journal of Earth Sciences, v. 111(2), p. 591-606. https://doi.org/10.1007/s00531-021-02131-8
Zhao, P., Appel, E., Xu, B., Sukhbaatar, T. 2020. First Paleomagnetic Result from the Early Permian Volcanic Rocks in Northwestern Mongolia: Evolutional Implication for the Paleo-Asian Ocean and the Mongol-Okhotsk Ocean. Journal of Geophysical Research: Solid Earth, v. 125(2), e2019JB017338. https://doi.org/10.1029/2019JB017338
Zhu, Z., Liu, Y., Kuang, H., Benton, M.J., Newell, A.J., Xu, H., An, W., Ji, S., Xu, S., Peng, N., Zhai, Q. 2019. Altered fluvial patterns in North China indicate rapid climate change linked to the Permian-Triassic mass extinction. Scientific Reports, v. 9, p. 1-11. https://doi.org/10.1038/s41598-019-53321-z
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Per Michaelsen, Karsten M. Storetvedt
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright on any research article in the Mongolian Geoscientist is retained by the author(s).
The authors grant the Mongolian Geoscientist a license to publish the article and identify itself as the original publisher.
Articles in the Mongolian Geoscientist are Open Access articles published under a Creative Commons Attribution 4.0 International License CC BY.
This license permits use, distribution and reproduction in any medium, provided the original work is properly cited.