Geochronology and Petrogenesis of the Gol Mod Massif: Implications for the Geodynamic Evolution of the Orkhon-Selenge Belt, Northwestern Mongolia

Authors

  • Dashdorjgochoo Odgerel Department of Magmatism and Metallogeny, Institute of Geology, Mongolian Academy of Sciences, Ulaanbaatar 18080, Mongolia https://orcid.org/0000-0002-2275-4941
  • Bayaraa Ganbat Department of Magmatism and Metallogeny, Institute of Geology, Mongolian Academy of Sciences, Ulaanbaatar 18080, Mongolia https://orcid.org/0000-0001-8304-0160
  • Viktor Antipin Vinogradov Institute of Geochemistry, Siberian Branch Russian Academy of Sciences, Russian Academy of Sciences, Irkutsk 650033, Russia
  • Dorjgochoo Sanchir Department of Magmatism and Metallogeny, Institute of Geology, Mongolian Academy of Sciences, Ulaanbaatar 18080, Mongolia https://orcid.org/0000-0002-4475-7852
  • Choinbol Tumurchudur Gurvantalst LLC, Ulaanbaatar 13380, Mongolia https://orcid.org/0000-0002-2787-3683

DOI:

https://doi.org/10.5564/mgs.v27i55.2310

Keywords:

Late Permian, Volcanic plutonic belt, Ce4 /Ce3 , Low oxygen fugacity, Selenge Complex

Abstract

The Orkhon-Selenge Belt is a Late Permian to Early Triassic volcanic plutonic belt located in northern Mongolia and is part of the Central Asian Orogenic Belt. The Selenge Complex, which is a part of the Orkhon-Selenge Belt, is a key area for studying the tectonic and magmatic evolution of the Central Asian Orogenic Belt. This study aims to contribute to understanding of the geodynamic evolution of the Orkhon-Selenge Belt by investigating the petrology, geochemistry and geochronology of the rocks in the region. Our results indicate that intrusive rocks were characterized as high-K, Calc-alkaline series and metaluminous to weakly peraluminous I-type granite affinities and their geochemical characteristics are indicating as arc-like geochemical signatures with depleted in elements such as Nb, Ta, Ti and Y and enriched in elements such as Rb, Cs, Th, K and light rare earth elements. Using zircon U-Pb dating, we determined an age of 257.3±0.73 Ma for the alkali granite, suggesting that south-western part of the Orkhon-Selenge Belt formed during the Late Permian time. The Selenge pluton, which is closely related to Erdenet-Ovoo porphyry type mineralization, is a composite intrusion. However, the zircon grains display magmatic and low oxygen fugacity conditions, which characteristics are likely the effect of weak mineralization of magma ascent with Late Permian tectonothermal event in the south-west part of the Orkhon-Selenge Belt. The results of this study will provide insights into the formation and evolution of the north-western segment of the Mongol-Okhotsk Belt, and will have implications for our understanding of the tectonic history of this region.

Downloads

Download data is not yet available.
Abstract
170
PDF
203

Author Biography

Bayaraa Ganbat, Department of Magmatism and Metallogeny, Institute of Geology, Mongolian Academy of Sciences, Ulaanbaatar 18080, Mongolia

CAS Key Laboratory of Crust-Mantle Materials and Environments, University of Science and Technology of China, Hefei 230026, China

References

Andersen, T. 2002. Correction of common lead in U–Pb analyses that do not report 204Pb: Chemical Geology, v. 192, p. 59-79. https://doi.org/10.1016/S0009-2541(02)00195-X

Badarch, G., Cunningham, D.W., Windley, B.F. 2002. A new terrane subdivision for Mongolia: Implications for the Phanerozoic crustal growth of Central Asia. Journal of Asian Earth Sciences, v. 21(1), p. 87-110. https://doi.org/10.1016/S1367-9120(02)00017-2

Ballard, J.R., Palin, M.J., Campbell, I.H. 2002. Relative oxidation states of magmas inferred from Ce (IV)/Ce (III) in zircon: application to porphyry copper deposits of northern Chile. Contributions to Mineralogy and Petrology, v. 144, p. 347-364. https://doi.org/10.1007/s00410-002-0402-5

Belousova, E.A., Griffin, W.L., O’Reilly, S.Y., Fisher, N.L. 2002. Igneous zircon: trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology, v. 143, p. 602-622. https://doi.org/10.1007/s00410-002-0364-7

Berzina, A.N., Sotnikov, V.I., Ponomarchuk, V.A., Berzina, A.P., Kiseleva, V.Y., Stanley, C.J. 1999. Temporal periods of formation of Cu-Mo porphyry deposits, Siberia and Mongolia. Mineral deposits -Processes to Processing. Rotterdam, Balkema, p. 321-324.

Berzina, A.P., Sotnikov, V.I. 2007. Character of formation of the Erdenet-Ovoo porphyry Cu-Mo magmatic center (northern Mongolia) in the zone of influence of a Permo-Triassic plume. Russian Geology and Geophysics, v. 48, p. 141-156. https://doi.org/10.1016/j.rgg.2007.01.001

Boynton, W.V. 1984. Cosmochemistry of the rare earth elements: meteorite studies, in: Developments in Geochemistry. Elsevier, v. 2, p. 63-114. https://doi.org/10.1016/B978-0-444-42148-7.50008-3

Dejidmaa, G., Naito, K. 1998. Previous studies on the Erdenetiin ovoo porphyry copper-molybdenum deposit, Mongolia (特集 モンゴル国の鉱物資源). Bulletin of the Geological Survey of Japan, v. 49(6), p. 299-308.

Fu, B., Mernagh, T.P., Kita, N.T., Kemp, A.I.S., Valley, J.W. 2009. Distinguishing magmatic zircon from hydrothermal zircon: A case study from the Gidginbung high-sulphidation Au–Ag–(Cu) deposit, SE Australia. Chemical Geology, v. 259(3-4), p. 131-142. https://doi.org/10.1016/j.chemgeo.2008.10.035

Ganbat, A., Tsujimori, T., Miao, L., Safonova, I., Pastor-Galán, D., Anaad, C., Baatar, M., Aoki, S., Aoki, K., Savinskiy, I. 2021. Late Paleozoic–Early Mesozoic granitoids in the Khangay-Khentey basin, Central Mongolia: Implication for the tectonic evolution of the Mongol-Okhotsk Ocean margin. Lithos, v. 404-405. https://doi.org/10.1016/j.lithos.2021.106455

Gerel, O. 1998. Phanerozoic felsic magmatism and related mineralization in Mongolia (特集 モンゴル国の鉱物資源). 地質調査所月報, v. 49(6), p. 239-248.

Gerel, O., Dandar, S., Amar-Amgalan, S., Javkhlanbold, D., Myagamarsuren, S., Myagmarsuren, S., Munkhtsengel, B., Soyolmaa, B. 2005. Geochemistry of granitoids and altered rocks of the Erdenet porphyry copper-molybdenum deposit, central Mongolia. Mineral Deposit Research: Meeting the Global Challenge, Springer, p. 1137-1140. https://doi.org/10.1007/3-540-27946-6_290

Govindaraju, K. 1994. 1994 compilation of working values and sample description for 383 geostandards. Geostandards Newsletter, v. 18, p. 1-158. https://doi.org/10.1007/s00410-009-0409-2

Grimes, C.B., John, B.E., Cheadle, M.J., Mazdab, F.K., Wooden, J.L., Swapp, S., Schwartz, J.J. 2009. On the occurrence, trace element geochemistry, and crystallization history of zircon from in situ ocean lithosphere. Contributions to Mineralogy and Petrology, v. 158(6), p. 757-783. https://doi.org/10.1007/s00410-009-0409-2

Grimes, C.B., John, B.E., Kelemen, P.B., Mazdab, F.K., Wooden, J.L., Cheadle, M.J., Hanghøj, K., Schwartz, J.J. 2007. Trace element chemistry of zircons from oceanic crust: A method for distinguishing detrital zircon provenance. Geology, v. 35(7), p. 643-646. https://doi.org/10.1130/G23603A.1

Gurragchaa, I., Төмөртогоо, O. 2014. UGZ-geological map 1:200 000, M-47-XXXVI.

Gusev, G.S., Khain, V.Y. 1995. On relations between the Baikal-Vitim, Aldan-Stanovoy, and Mongol-Okhotsk terranes (south of mid-Siberia). Geotectonics, v. 29(5), p. 422–436.

Hanžl, P., Guy, A., Battushig, A., Lexa, O., Schulmann, K., Kunceová, E., Hrdličková, K., Janoušek, V., Buriánek, D., Krejčí, Z., Jiang, Y., Otgonbaatar, D. 2020. Geology of the Gobi and Mongol Altai junction enhanced by gravity analysis: a key for understanding of the Mongolian Altaides. Journals of Maps, v. 16(2), p. 98-107. https://doi.org/10.1080/17445647.2019.1700835

Hoskin, P.W.O. 2005. Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. Geochimica et Cosmochimica Acta, v. 69(3), p. 637-648. https://doi.org/10.1016/j.gca.2004.07.006

Hoskin, P.W.O., Schaltegger, U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry, v. 53(1), p. 27-62. https://doi.org/10.2113/0530027

Jahn, B., Wu, F., Chen, B. 2000. Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic. Earth and Environmental Science Transactions of The Royal Society of Edinburgh, v. 91(1-2). p. 81-193. https://doi.org/10.1017/S0263593300007367

Kirkland, C.L., Whitehouse, M.J., Slagstad, T. 2009. Fluid-assisted zircon and monazite growth within a shear zone: a case study from Finnmark, Arctic Norway. Contributions to Mineralogy and Petrology, v. 158(5), p. 637-657. https://doi.org/10.1007/s00410-009-0401-x

Litvinovsky, B.A., Podladtchikov, Y.Y., Zanvilevitch, A.N., Dunitchev, V.M. 1990. On the melting of acidic volcanites in the contact of basic magma at shallow depth. Geokhimiya v. 6, p. 807-814 (in Russian).

Ludwig, K.R. 2003. User’s manual for isoplot 3.00, a geochronlogical toolkit for microsoft excel. Berkeley Geochronology Center. Special Publication, No 4, p. 25-32.

Middlemost, E.A.K. 1994. Naming materials in the magma/igneous rock system. Earth Science Reviews, v. 37, p. 215-224. https://doi.org/10.1016/0012-8252(94)90029-9

Morozumi, H. 2003, Geochemical characteristics of granitoids of the Erdenet porphyry copper deposit, Mongolia. Resource Geology, v. 53, p. 311-316. https://doi.org/10.1111/j.1751-3928.2003.tb00180.x

Munkhtsengel, B., Gerel, O., Tsuchiya, N., Ohara, M. 2007. Petrochemistry of Igneous Rocks in Area of the Erdenetiin Ovoo Porphyry Cu‐Mo Mineralized District, Northern Mongolia, in AIP Conference Proceedings, American Institute of Physics, v. 898, p. 63-65. https://doi.org/10.1063/1.2721250

Pearce, J.A. 2014. Immobile element fingerprinting of ophiolites. Elements, v. 10(2), p. 101-108. https://doi.org/10.2113/gselements.10.2.101

Pearce, J.A., Harris, N.B.W., Tindle, A.G. 1984. Trace element distribution diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology. v. 25(4), p. 956-983. https://doi.org/10.1093/petrology/25.4.956

Peccerillo, A., Taylor, S.R. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to Mineralogy and Petrology, v. 58, p. 63-81. https://doi.org/10.1007/BF00384745

Şengör, A.M.C., Natal’In, B.A., Burtman, V.S. 1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature, v. 364, p. 299-307. https://doi.org/10.1038/364299a0

Shand, S.J. 1943. Eruptive Rocks. Their Genesis, Composition, Classification, and Their Relation to Ore-Deposits with a Chapter on Meteorite. New York: John Wiley & Sons.

Shen, P., Hattori, K., Pan, H., Jackson, S., Seitmuratova, E. 2015. Oxidation condition and metal fertility of granitic magmas: Zircon trace-element data from porphyry cu deposits in the Central Asian Orogenic Belt. Economic Geology, v. 110(7), p. 1861-1878. https://doi.org/10.2113/econgeo.110.7.1861

Sotnikov, V.I., Ponomarchuk, V.A., Berzina, A.P., Travin, A.V. 1995. Geochronological borders of magmatism of Cu-Mo-porphyry Erdenetuin-Obo deposit (Mongolia). Geologiya i Geofizika, v. 36(3); p. 78-89.

Streckeisen, A., Le Maitre, R.W. 1979. A chemical approximation to the modal QAPF classification of igneous rocks: Neues Jahrbuch für Mineralogie Abhandlugen, v. 136, p. 169-206.

Sun, S.S., McDonough, W.F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society, London, Special Publications, v. 42, p. 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19

Tang, J., Xu, W.L., Wang, F., Zhao, S., Wang, W. 2016. Early Mesozoic southward subduction history of the Mongol–Okhotsk oceanic plate: Evidence from geochronology and geochemistry of Early Mesozoic intrusive rocks in the Erguna Massif, NE China: Gondwana Research, v. 31, p. 218-240. https://doi.org/10.1016/j.gr.2014.12.010

Trail, D., Watson, E.B., Tailby, N.D. 2012. Ce and Eu anomalies in zircon as proxies for the oxidation state of magmas. Geochimica et Cosmochimica Acta, v. 97, p. 70-87. https://doi.org/10.1016/j.gca.2012.08.032

Tumurchudur, C., Ganbayar, G., Ariunbold, P. 2012. 1:50,000 scale geological mapping, general prospecting of the Khunuin Gol area. Geological Information Center of Mongolia, Report #7055.

Watanabe, Y., Stein, H.J. 2000. Re-Os ages for the Erdenet and Tsagaan Suvarga porphyry Cu-Mo deposits, Mongolia, and tectonic implications. Economic Geology, v. 95, p. 1537-1542. https://doi.org/10.2113/95.7.1537

Watson, E.B., Wark, D.A., Thomas, J.B. 2006. Crystallization thermometers for zircon and rutile. Contributions to Mineralogy and Petrology, v. 151, p. 413-433. https://doi.org/10.1007/s00410-006-0068-5

Windley, B.F., Alexeiev, D., Xiao, W., Kroner, A., Badarch, G. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, v. 164, p. 31–47. https://doi.org/10.1144/0016-76492006-022

Yarmolyuk, V.V, Kovalenko, V.I. 1991. Rift magmatism of active continental margins and its ore potential. Nauka, Moscow (in Russian).

Yarmolyuk, V.V., Kozlovsky, A.M., Savatenkov, V.M., Kovach, V.P., Kozakov, I.K., Kotov, A.B., Lebedev V.I., Eenjin, G. 2016. Composition, sources, and geodynamic nature of giant batholiths in Central Asia: evidence from the geochemistry and Nd isotopic characteristics of granitoids in the Khangai Zonal magmatic area. Petrology, v. 24, p. 433-461. https://doi.org/10.1134/S0869591116050064

Zhao, P., Xu, B., Jahn, B.M. 2017. The Mongol-Okhotsk Ocean subduction-related Permian peraluminous granites in northeastern Mongolia: Constraints from zircon U-Pb ages, whole-rock elemental and Sr-Nd-Hf isotopic compositions: Journal of Asian Earth Sciences, v. 144, p. 225-242. https://doi.org/10.1016/j.jseaes.2017.03.022

Zonenshain, L.P., Kuzmin, M.I., Natapov, L.M. 1990. Benjamin M.P. (Ed). Geology of the USSR: Plate-Tectonic Synthesis. Geodynamics Series Volume 21. ISBN 0-87590-521-8. https://doi.org/10.1029/GD021

Zorin, Y.A. 1999. Geodynamics of the western part of the Mongolia–Okhotsk collisional belt, Trans-Baikal region (Russia) and Mongolia: Tectonophysics, v. 306, p. 33-56, https://doi.org/10.1016/S0040-1951(99)00042-6

Downloads

Published

2022-12-29

How to Cite

Odgerel, D., Ganbat, B., Antipin, V., Sanchir, D., & Tumurchudur, C. (2022). Geochronology and Petrogenesis of the Gol Mod Massif: Implications for the Geodynamic Evolution of the Orkhon-Selenge Belt, Northwestern Mongolia. Mongolian Geoscientist, 27(55), 1–17. https://doi.org/10.5564/mgs.v27i55.2310

Issue

Section

Articles