Geochemistry and geochronology of Carboniferous volcanic rocks from the Edren range, Trans-Altai Zone, SW Mongolia

Authors

DOI:

https://doi.org/10.5564/mgs.v27i55.2688

Keywords:

Edrengiin Nuruu, Dulaan Khar, U-Pb age, magmatism

Abstract

The Edren range of the Trans-Altai zone is situated in the central south part of the Central Asian Orogenic Belt. The Edren range is composed primarily of volcano-sedimentary rocks that were weakly metamorphosed during the Devonian to Carboniferous periods. These rocks were then intruded by granite plutons during the Carboniferous to Permian periods. The area is further divided into two units, the Edrengiin Nuruu and Davkhar Khar, which are separated by the Khyariingun thrust fault. Three episodes of magmatism have been recognized in the Edren range. The earliest episode of magmatism at c. 360 Ma is present in the Edrengiin Nuruu unit. A younger episode of magmatism at c. 330 Ma is present in the Davkhar Khar unit. The youngest episode of magmatism, dated at c. 300 Ma is represented by rhyolite porphyry dykes in the Edrengiin Nuruu unit. The first episode of c. 360 Ma volcanism, developed in a continental arc setting, produced relatively contaminated basalt-andesite magma (SiO2=49.39-57.65 wt%; Mg#=27-47; (La/Yb)N=3.24-15.39) with relatively low initial ɛNd-values (from ca. +1.9 to +4.3) by subduction of the oceanic crust, developed on Devonian continental juvenile crust. Following subduction, steady northward transition of volcanic arc occurred. At c. 330 Ma continuous subduction of oceanic crust produced basalt-andesite-rhyolite magma (SiO2=47.16-72.76 wt%; Mg#=4-48; (La/Yb)N=1.34-10.91) with higher initial ɛNd-values (from ca. +1.6 to +5.8). At c. 300 Ma, rhyolite porphyry dykes (SiO2=75.70-75.86 wt%; Mg#=5-6; ɛNd=+2.6) developed in the Edrengiin Nuruu unit by subduction or collision-related magmatism.

Downloads

Download data is not yet available.
Abstract
182
PDF
159

Author Biographies

Otgonkhuu Javkhlan, Telmen Resource LLC, TMK Energy Limited, Ulaanbaatar 13336, Mongolia

Geoscience Center, Mongolian University of Science and Technology, Ulaanbaatar 14191, Mongolia

Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China

 

Anaad Chimedtseren, Geoscience Center, Mongolian University of Science and Technology, Ulaanbaatar 14191, Mongolia

Mongolian Natural History Museum, Ulaanbaatar 15141, Mongolia

Batkhishig Bayaraa, Geoscience Center, Mongolian University of Science and Technology, Ulaanbaatar 14191, Mongolia

School of Geology and Mining Engineering, Mongolian University of Science and Technology, Ulaanbaatar 14191, Mongolia

Baatar Munkhtsengel, Geoscience Center, Mongolian University of Science and Technology, Ulaanbaatar 14191, Mongolia

School of Geology and Mining Engineering, Mongolian University of Science and Technology, Ulaanbaatar 14191, Mongolia

References

Minster, J.F. 1978. Quantitative models of trace element behavior in magmatic processes. Earth and Planetary Science Letters, v. 38(1), p. 1-25. https://doi.org/10.1016/0012-821X(78)90123-1

Badarch, G., Cunningham, W.D., Windley, B.F. 2002. A new terrane subdivision for Mongolia: implications for the Phanerozoic crustal growth of Central Asia. Journal of Asian Earth Sciences, v. 21(1), p. 87-110. https://doi.org/10.1016/S1367-9120(02)00017-2

Batkhishig, B., Noriyoshi, T., Greg, B. 2010. Magmatism of the Shuteen Complex and Carboniferous subduction of the Gurvansaikhan terrane, South Mongolia. Journal of Asian Earth Sciences, v. 37(5-6), p. 399-411. https://doi.org/10.1016/j.jseaes.2009.10.004

Boynton, W.V. 1984. Cosmochemistry of the rare earth elements: meteorite studies. Developments in Geochemistry, v. 2, p. 63-114. https://doi.org/10.1016/B978-0-444-42148-7.50008-3

Buriánek, D., Schulmann, K., Hrdličková, K., Hanžl, P., Janoušek, V., Gerdes, A., Lexa, O. 2017. Geochemical and geochronological constraints on distinct Early-Neoproterozoic and Cambrian accretionary events along southern margin of the Baydrag Continent in western Mongolia.Gondwana Research, v. 47, p. 200-227. https://doi.org/10.1016/j.gr.2016.09.008

Cai, K., Sun, M., Xiao, W., Yuan, C., Zhao, G., Long, X., Tumurkhuu, D., Zhou, K. 2017. Petrogenesis of late Paleozoic tholeiitic, Nb-enriched, calc-alkaline and adakitic rocks in southwestern Mongolia: Implications for intra-oceanic arc evolution. Lithos, v. 202, p. 413-428. https://doi.org/10.1016/j.lithos.2014.06.004

DePaolo, D.J. 1981. Neodymium isotopes in the Colorado Front Range and crust–mantle evolution in the Proterozoic. Nature, v. 291, p. 193-196. https://doi.org/10.1038/291193a0

Floyd, P.A., Winchester, J.A. 1975. Magma type and tectonic setting discrimination using immobile elements. Earth and Planetary Science Letters, v. 27(2), p. 211-218. https://doi.org/10.1016/0012-821X(75)90031-X

Gordienko, I.V. 1987. Paleozoic Magmatism and Geodynamics of the Central Asian Fold Belt. Nauka, Moscow, p. 240 (in Russian).

Guy, A., Schulmann, K., Munschy, M., Miehe, J.M., Edel, J.B., Lexa, O., Fairhead, D. 2014. Geophysical constraints for terrane boundaries in southern Mongolia. Journal of Geophysical Research: Solid Earth, v. 119(10), p. 7966-7991. https://doi.org/10.1002/2014JB011026

Hanžl, P., Bat-Ulzii, D., Rejchrt, M., Košler, J., Bolormaa, Kh., Hrdličková, K. 2008. Geology and geochemistry of the Palaeozoic plutonic bodies of the Trans-Altay Gobi, SW Mongolia: Implications for magmatic processes in an accreted volcanic-arc system. Journal of Geosciences, v. 53(2), p. 201-234. https://doi.org/10.3190/jgeosci.028

Hanžl, P., Schulmann, K., Janousek, V., Lexa, O., Hrdlickova, K., Jiang, Y., Buriánek, D., Altanbaatar, B., Ganchuluun, T., Erban, V. 2016. Making continental crust: origin of Devonian orthogneisses from SE Mongolian Altai. Journal of Geoscience, v. 61(1), p. 25-50. https://doi.org/10.3190/jgeosci.206

Harris, N.B., Pearce, J.A., Tindle, A.G. 1986. Geochemical characteristics of collision-zone magmatism. Geological Society London Special Publications, v. 19(1), p. 67-81. https://doi.org/10.1144/GSL.SP.1986.019.01.04

Hastie, A.R., Kerr, A.C., Pearce, J.A., Mitchell, S.F. 2007. Classification of Altered Volcanic Island Arc Rocks using Immobile Trace Elements: Development of the Th-Co Discrimination Diagram. Journal of Petrology, v. 48(12), p. 2341-2357. https://doi.org/10.1093/petrology/egm062

Helo, C., Hegner, E., Kroner, A., Badarch, G., Tomurtogoo, O., Windley, B.F., Dulski, P. 2006. Geochemical signature of Paleozoic accretionary complexes of the Central Asian Orogenic Belt in South Mongolia: constraints on arc environments and crustal growth. Chemical Geology, v. 227(3-4), p. 236-257. https://doi.org/10.1016/j.chemgeo.2005.10.003

Hofmann, A.W. 1997. Mantle geochemistry: the message from oceanic volcanism. Nature, v. 385(6613), p. 219-229. https://doi.org/10.1038/385219a0

Hollocher, K., Robinson, P., Walsh, E., Roberts, D. 2012. Geochemistry of amphibolite-facies volcanics and gabbros of the Støren Nappe in extensions west and southwest of Trondheim, Western Gneiss Region, Norway: a key to correlations and paleotectonic settings. American Journal of Science, v. 312(4), p. 57-416. https://doi.org/10.2475/04.2012.01

Hou, Z., Yang, Z., Qu, X., Meng, X., Li, Z., Beaudoin, G., Rui, Z., Gao, Y., Zaw, K. 2009. The Miocene Gangdese porphyry copper belt generated during post-collisional extension in the Tibetan Orogen. Ore Geology Reviews, v. 36(1-3), p. 25-51. https://doi.org/10.1016/j.oregeorev.2008.09.006

Jackson, S.E., Pearson, N.J., Griffin, W.L., Belousova, E.A. 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chemical Geology, v. 211(1-2), p. 47-69. https://doi.org/10.1016/j.chemgeo.2004.06.017

Jahn, B.M. 2010. Accretionary orogen and evolution of the Japanese Islands: Implications from a Sr-Nd isotopic study of the Phanerozoic granitoids from SW Japan. American Journal of Science, v. 310(10), p. 1210-1249. https://doi.org/10.2475/10.2010.02

Jahn, B.M., Windley, B., Natal’In, B., Dobretsov, N. 2004. Phanerozoic continental growth in Central Asia. Journal of Asian Earth Sciences, v. 23(5), p. 599-603. https://doi.org/10.1016/S1367-9120(03)00124-X

Jahn, B.M., Wu, F.Y., Chen, B. 2000. Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, v. 91(1-2), p. 181-193. https://doi.org/10.1017/S0263593300007367

Janoušek, V., Jiang, Y., Buriánek, D., Schulmann, K., Hanžl, P., Soejono, I., Kröner, A., Altanbaatar, B., Erban, V., Lexa, O., Ganchuluun, T., Košler, J. 2018. Cambrian-Ordovician magmatism of the Ikh-Mongol Arc system exemplified by the Khantaishir Magmatic Complex (Lake Zone, south–central Mongolia). Gondwana Research, v. 54, p. 122-149. https://doi.org/10.1016/j.gr.2017.10.003

Jian, P., Kröner, A., Jahn, B.M., Windley, B.F., Shi, Y., Zhang, W., Zhang, F., Miao, L., Tumurhuu, D., Liu, D. 2014. Zircon dating of Neoproterozoic and Cambrian ophiolites in West Mongolia and implications for the timing of orogenic processes in the central part of the Central Asian Orogenic Belt. Earth-Science Reviews, v. 133, p. 62-93. https://doi.org/10.1016/j.earscirev.2014.02.006

Jiang, Y.D., Schulmann, K., Kröner, A., Sun, M., Lexa, O., Janoušek, V., Buriánek, D., Yuan, C., Hanžl, P. 2017. Neoproterozoic‐early Paleozoic peri‐Pacific accretionary evolution of the Mongolian collage system: Insights from geochemical and U‐Pb zircon data from the Ordovician sedimentary wedge in the Mongolian Altai. Tectonics, v. 36(11), p. 2305-2331. https://doi.org/10.1002/2017TC004533

Jung, C., Jung, S., Hoffer, E., Berndt, J. 2006. Petrogenesis of Tertiary Mafic Alkaline Magmas in the Hocheifel, Germany. Journal of Petrology, v. 47, p. 1637-1671. https://doi.org/10.1093/petrology/egl023

Kozlovsky, A.M., Yarmolyuk, V.V., Salnikova, E.B., Travin, A.V., Kotov, A.B., Plotkina, J.V., Kudryashova, E.A., Savatenkov, V.M. 2015. Late Paleozoic anorogenic magmatism of the Gobi Altai (SW Mongolia): Tectonic position, geochronology and correlation with igneous activity of the Central Asian Orogenic Belt. Journal of Asian Earth Sciences, v. 113, p. 524-541. https://doi.org/10.1016/j.jseaes.2015.01.013

Kröner, A., Kovach, V., Belousova, E., Hegner, E., Armstrong, R., Dolgopolova, A., Seltmann, R., Alexeiev, D.V., Hoffmann, J.E., Wong, J., Sun, M., Cai, K., Wang, T., Tong, Y., Wilde, S.A., Degtyarev, K.E., Rytsk, E. 2014. Reassessment of continental growth during the accretionary history of the Central Asian Orogenic Belt. Gondwana Research, v. 25(1), p. 103-125. https://doi.org/10.1016/j.gr.2012.12.023

Krӧner, A., Lehmann, J., Schulmann, K., Demoux, A., Lexa, O., Tomurhuu, D., Štípská, P., Liu, D., Wingate, M.T.D. 2010. Lithostratigraphic and geochronological constraints on the evolution of the Central Asian Orogenic Belt in SW Mongolia: Early Paleozoic rifting followed by late Paleozoic accretion. American Journal of Science, v, 310(7), p. 523-574. https://doi.org/10.2475/07.2010.01

Le Bas, M.J., Le Maitre, R.W., Streckeisen, A., Zanettin, B. 1986. A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram. Journal of Petrology, v. 27(3), p. 745-750. https://doi.org/10.1093/petrology/27.3.745

Lehmann, J., Schulmann, K., Lexa, O., Corsini, M., Kröner, A., Štípská, P., Tomurhuu, D., Otgonbator, D. 2010. Structural Constraints on the Evolution of the Central Asian Orogenic Belt in SW Mongolia. American Journal of Science, v. 310(7), p. 575-628. https://doi.org/10.2475/07.2010.02

Liu, Y., Gao, S., Hu, Z., Gao, C., Zong, K., Wang, D. 2010. Continental and Oceanic Crust Recycling-induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, v. 51(1-2), p. 537-571. https://doi.org/10.1093/petrology/egp082

Ludwig, K.R. 2003. Mathematical-statistical treatment of data and errors for 230Th/U geochronology. Reviews in Mineralogy and Geochemistry, 2003, v. 52(1), p. 631-656. https://doi.org/10.2113/0520631

Meschede, M. 1986. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb 1bZr 1bY diagram. Chemical Geology, v. 56(3-4), p. 207-218. https://doi.org/10.1016/0009-2541(86)90004-5

Munhtsengel, B., Chimedtseren, A., Javkhlan, O., Batkhishig, B., Altanzul, B., Soyolmaa, B., Burenjargal, O., Undarmaa, B, Ariuntsetseg, G., Manzshir, B., Munkh, J., Gerel, O., Tumurtogoo, O. 2018. Geology, magmatism, and mineralization of the paleo-subduction zones. Report of the Mongolian Foundation for Science and Technology Project No.ShUTT_012/2015, 450 p.

Nasdala, L., Hofmeister, W., Norberg, N., Martinson, J. M., Corfu, F., Dörr, W., Kamo, S.L., Kennedy, A.K., Kronz, A., Reiners, P.W., Frei, D., Kosler J., Wan, Y., Götze J., Häger, T., Kröner, A., Valley, J.W. 2008. Zircon M257‐a homogeneous natural reference material for the ion microprobe U‐Pb analysis of zircon. Geostandards and Geoanalytical Research, v. 32(3), p. 247-265. https://doi.org/10.1111/j.1751-908X.2008.00914.x

Nguyen, H., Hanžl, P., Janoušek, V., Schulmann, K., Ulrich, M., Jiang, Y., Lexa, O., Altanbaatar, B., Deiller, P. 2018. Geochemistry and geochronology of Mississippian volcanic rocks from SW Mongolia: Implications for terrane subdivision and magmatic arc activity in the Trans-Altai Zone. Journal of Asian Earth Sciences, v. 164, p. 322-343. https://doi.org/10.1016/j.jseaes.2018.06.029

Pearce, J. 1996. Sources and settings of granitic rocks. Episodes, v. 19(4), p. 120-125. https://doi.org/10.18814/epiiugs/1996/v19i4/005

Pearce, J.A. 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos, v. 100(1-4), 14-48. https://doi.org/10.1016/j.lithos.2007.06.016

Pearce, J.A. 2014. Immobile Element Fingerprinting of Ophiolites. Elements, v. 10(2), p. 101-108. https://doi.org/10.2113/gselements.10.2.101

Pearce, J.A., Cann, J.R. 1973. Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth and Planetary Science Letters, v. 19(2), p. 290-300. https://doi.org/10.1016/0012-821X(73)90129-5

Pearce, J.A., Harris, N.B., Tindle, A.G. 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, v. 25(4), p. 956-983. https://doi.org/10.1093/petrology/25.4.956

Peccerillo, A., Taylor, S.R. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology, v. 58, p. 63-81. https://doi.org/10.1007/BF00384745

Ruzhentsev, S. V., 2001, The Variscan Belt of South Mongolia and Dzungaria. In Dergunov, A.B., (Ed), Tectonics, Magmatism, and Metallogeny of Mongolia, London, Routledge, p. 61-94

Ruzhentsev, S.V., Pospelov, I.I. 1992. The South Mongolia Variscan fold system: Geotectonics, v. 30, p. 383-395

Safonova, I., Seltmann, R., Kroner, A., Gladkochub, D., Schulmann, K., Xiao, W., Kim, T., Komiya, T., Sun, M. 2011. A new concept of continental construction in the Central Asian Orogenic Belt (compared to actualistic examples from the Western Pacific). Episodes, v. 34(3), p. 186-196. https://doi.org/10.18814/epiiugs/2011/v34i3/005

Schulmann, K., Paterson, S. 2011. Asian Continental Growth. Nature Geoscience, v. 4, p. 827-829. https://doi.org/10.1038/ngeo1339

Sengör, A.C., Natal'In, B.A. 1996. Turkic-Type Orogeny and its Role in the Making of the Continental Crust. Annual Review of Earth and Planetary Sciences, v. 24(1), p. 263-337. https://doi.org/10.1146/annurev.earth.24.1.263

Sláma, J., Košler, J., Condon, D.J., Crowley, J.L., Gerdes, A., Hanchar, J.M., Horstwood, M.S.A., Morris, G. A., Nasdala, L., Norberg, N., Schaltegger U., Schoene, B., Tubrett, M.N., Whitehouse, M.J. 2008. Plešovice zircon - A new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology, v. 249 (1-2), p. 1-35. https://doi.org/10.1016/j.chemgeo.2007.11.005

Šourek, J., Černý, M., Reichert, M., 2003. Geological and Geochemical Mapping of Trans-Altay Gobi on the Scale 1:200 000. Unpublished manuscript, MRPAM, Ulaanbaatar.

Sun, S.S., McDonough, W.F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications, v. 42(1), p. 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19

Tasáryová, Z., Janoušek, V., Frýda, J. 2018. Failed Silurian continental rifting at the NW margin of Gondwana: evidence from basaltic volcanism of the Prague Basin (Teplá–Barrandian Unit, Bohemian Massif). International Journal of Earth Sciences, v. 107(4), p. 1231-1266. https://doi.org/10.1007/s00531-017-1530-5

Tatsumi, Y. 2001. Geochemical modeling of partial melting of subducting sediments and subsequent melt-mantle interaction: Generation of high-Mg andesites in the Setouchi volcanic belt, southwest Japan. Geology, v. 29(4), p. 323-326. https://doi.org/10.1130/0091-7613(2001)029<0323:GMOPMO>2.0.CO;2

Togtokh, J., Tumurchudur, Ch., Lkhundev, Sh., Oyunchimeg, T., Ganbayar, G., Khulan, B. 2020. Geodynamic problems, composition and ages of granitoid in the Edren Terrane. Khaiguulchin, v. 62, p. 26-39 (in Mongolian)

Wang, X.C., Wilde, S.A., Xu, B., Pang, C.J. 2016. Origin of arc-like continental basalts: Implications for deep-Earth fluid cycling and tectonic discrimination. Lithos, v. 261, p. 5-45. https://doi.org/10.1016/j.lithos.2015.12.014

Winchester, J.A., Floyd, P.A. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, v. 20, p. 325-343. https://doi.org/10.1016/0009-2541(77)90057-2

Windley, B. F., Alexeiev, D., Xiao, W., Kröner, A., Badarch, G. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, v. 164(1), p. 31-47. https://doi.org/10.1144/0016-76492006-022

Wood, D.A. 1980. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province. Earth and Planetary Science Letters, v. 50(1), p. 11-30. https://doi.org/10.1016/0012-821X(80)90116-8

Xiao, W., Kusky, T. 2009, Geodynamic processes and metallogenesis of the Central Asian and related orogenic belts: Introduction. Gondwana Research, v. 16(2), p. 167-169. https://doi.org/10.1016/j.gr.2009.05.001

Xiao, W., Windley, B.F., Han, C., Liu, W., Wan, B., Zhang, J., Ao, S., Zhang, Z., Song, D. 2018. Late Paleozoic to early Triassic multiple roll-back and oroclinal bending of the Mongolia collage in Central Asia. Earth-Science Reviews, v. 186, p. 94-128. https://doi.org/10.1016/j.earscirev.2017.09.020

Xiao, W., Windley, B.F., Sun, S., Li, J., Huang, B., Han, C., Yuan, C., Sun, M., Chen, H. 2015. A tale of amalgamation of three collage systems in the Permian-Middle Triassic in Central Asia: Oroclines, sutures and terminal accretion. Annual Review of Earth and Planetary Sciences, v. 43, p. 477-507. https://doi.org/10.1146/annurev-earth-060614-105254

Yarmolyuk, V.V., Kovalenko, V.I., Sal’Nikova, E.B., Kovach, V.P., Kozlovsky, A.M., Kotov, A.B., Lebedev, V.I. 2008. Geochronology of igneous rocks and formation of the late Paleozoic south Mongolian active margin of the Siberian continent. Stratigraphy and Geological Correlation, v. 16(2), p. 162-181. https://doi.org/10.1134/S0869593808020056

Yuan, C., Sun, M., Xiao, W., Li, X., Chen, H., Lin, S., Xia, X., Long, X. 2007. Accretionary orogenesis of the Chinese Altai: Insights from Paleozoic granitoids. Chemical Geology, v. 242(1-2), p. 22-39. https://doi.org/10.1016/j.chemgeo.2007.02.013

Zhu, M., Zhang, F., Fan, J., Miao, L., Munkhtsengel, B., Anaad, C., Yang, S., Li, X., Ganbat, A. 2017. Late Carboniferous bimodal volcanic rocks and coeval A-type granite in the Suman Khad area, Southwest Mongolia: Implications for the tectonic evolution. Journal of Asian Earth Sciences, v. 144, p. 54-68. https://doi.org/10.1016/j.jseaes.2017.03.025

Downloads

Additional Files

Published

2022-12-30

How to Cite

Javkhlan, O., Chimedtseren, A., Gerel, O., Bayaraa, B., & Munkhtsengel, B. (2022). Geochemistry and geochronology of Carboniferous volcanic rocks from the Edren range, Trans-Altai Zone, SW Mongolia. Mongolian Geoscientist, 27(55), 18–40. https://doi.org/10.5564/mgs.v27i55.2688

Issue

Section

Articles