Expression and functional role of LncRNA GSEC in oral squamous cell carcinoma
DOI:
https://doi.org/10.24079/CAJMS.2025.04.001Keywords:
Proliferation, Apoptosis, OSCC, LncRNA GSECAbstract
Objective: The current investigation seeks to elucidate the regulatory impact of the long non-coding RNA GSEC (lncRNA GSEC) on oncogenic mechanisms in oral squamous cell carcinoma. Methods: The expression dynamics of GSEC were systematically mapped across in vitro systems, including healthy oral keratinocyte controls (NHOK) and their malignant counterparts (SCC-25, SCC-9, CAL-27), utilizing standardized qRT-PCR protocols. CAL-27 (highest GSEC expression) underwent siRNA-mediated knockdown. The assessment of cellular functions such as proliferation, apoptosis regulation, mobility, and invasion was conducted utilizing validated protocols: CCK-8 for cell viability assessment, flow cytometry for apoptotic cell identification, Transwell systems for measuring invasive ability, and scratch assay for migration analysis. mRNA and protein levels of proliferation/apoptosis markers (Ki67, PCNA, BCL-2, BAX, caspase-9) were analyzed by qRT-PCR, Western blot, and immunofluorescence. Results: GSEC was significantly upregulated in OSCC cells vs. NHOK (p<0.05), peaking in CAL-27 (p<0.05 vs. SCC-9/SCC-25). Downregulation of GSEC inhibited the proliferation, migration, and invasive capabilities of OSCC cells and promoted apoptosis with statistical significance (p<0.05). A decrease in Ki67 and PCNA expression, accompanied by an increase in BAX and caspase-9 and a decrease in BCL-2 levels, was detected at the mRNA and protein levels, with all reaching statistical significance at the p<0.05 threshold. Conclusion: GSEC overexpression promotes OSCC malignancy by driving proliferation and inhibiting apoptosis. Targeting GSEC may offer diagnostic and therapeutic potential for OSCC.
Downloads
32
References
1. Tan Y, Wang Z, Xu M, et al. Oral squamous cell carcinomas: state of the field and emerging directions. Int J Oral Sci. 2023;15(1):44. https://doi.org/10.1038/s41368-023-00249
2. Jagadeesan D, Sathasivam KV, Fuloria NK, et al. Comprehensive insights into oral squamous cell carcinoma: Diagnosis, pathogenesis, and therapeutic advances. Pathol Res Pract. 2024;261:155489. https://doi.org/10.1016/j.prp.2024.155489
3. Bugshan A, Farooq I. Oral squamous cell carcinoma: metastasis, potentially associated malignant disorders, etiology and recent advancements in diagnosis. F1000Res. 2020;9:229. https://doi.org/10.12688/f1000research.22941.1
4. Miniuk M, Reszeć-Giełażyn J, Bortnik P, et al. Novel Predictive Biomarkers in the Head and Neck Squamous Cell Carcinoma (HNSCC). J Clin Med. 2024;13(19):5876. https://doi.org/10.3390/jcm13195876
5. Alqutub S, Alqutub A, Bakhshwin A, et al. Histopathological predictors of lymph node metastasis in oral cavity squamous cell carcinoma: a systematic review and meta-analysis. Front Oncol. 2024;14:1401211. https://doi.org/10.3389/fonc.2024.1401211
6. Gupta S, Singh A, Deorah S, et al. Immunotherapy in OSCC: Current trend and challenges. Crit Rev Oncol Hematol. 2025;209:104672. https://doi.org/10.1016/j.critrevonc.2025.104672
7. Chai AWY, Lim KP, Cheong SC. Translational genomics and recent advances in oral squamous cell carcinoma. Semin Cancer Biol. 2020;61:71-83. https://doi.org/10.1016/j.semcancer.2019.09.011
8. Shen T, Yang T, Yao M, et al. BTC as a Novel Biomarker Contributing to EMT via the PI3K-AKT Pathway in OSCC. Front Genet. 2022;13:875617. https://doi.org/10.3389/fgene.2022.875617
9. Bridges MC, Daulagala AC, Kourtidis A. LNCcation: lncRNA localization and function. J Cell Biol. 2021;220(2):e202009045. https://doi.org/10.1083/jcb.202009045
10. Nojima T, Proudfoot NJ. Mechanisms of lncRNA biogenesis as revealed by nascent transcriptomics. Nat Rev Mol Cell Biol. 2022;23(6):389-406. https://doi.org/10.1038/s41580-022-00551-1
11. Zhang Y. LncRNA-encoded peptides in cancer. J Hematol Oncol. 2024;17(1):66. https://doi.org/10.1186/s13045-024-01591-0
12. Hao L, Wu W, Xu Y, et al. LncRNA-MALAT1: A Key Participant in the Occurrence and Development of Cancer. Molecules. 2023;28(5):2126. https://doi.org/10.3390/molecules28052126
13. Matsumura K, Kawasaki Y, Miyamoto M, et al. The novel G-quadruplex-containing long non-coding RNA GSEC antagonizes DHX36 and modulates colon cancer cell migration. Oncogene. 2017;36(9):1191-1199. https://doi.org/10.1038/onc.2016.282
14. Liu P, Zhou L, Chen H, et al. Identification of a novel intermittent hypoxia-related prognostic lncRNA signature and the ceRNA of lncRNA GSEC/miR-873-3p/EGLN3 regulatory axis in lung adenocarcinoma. PeerJ. 2023;11:e16242. https://doi.org/10.7717/peerj.16242
15. Hu S, Zhang J, Guo G, et al. Comprehensive analysis of GSEC/miR-101-3p/SNX16/PAPOLG axis in hepatocellular carcinoma. PLoS One. 2022;17(4):e0267117. https://doi.org/10.1371/journal.pone.0267117
16. Liu R, Ju C, Zhang F, et al. LncRNA GSEC promotes the proliferation, migration and invasion by sponging miR-588/ EIF5A2 axis in osteosarcoma. Biochem Biophys Res Commun. 2020;532(2):300-307. https://doi.org/10.1016/j.bbrc.2020.08.056
17. Zhang J, Du C, Zhang L, et al. lncRNA GSEC Promotes the Progression of Triple Negative Breast Cancer (TNBC) by Targeting the miR-202-5p/AXL Axis. Onco Targets Ther. 2021;14:2747-2759. https://doi.org/10.2147/OTT.S293832
18. Bracken CP, Goodall GJ, Gregory PA. RNA regulatory mechanisms controlling TGF-β signaling and EMT in cancer. Semin Cancer Biol. 2024;102-103:4-16. https://doi.org/10.1016/j.semcancer.2024.08.005
19. Yang K, Liu H, Li JH. A methylation-related lncRNA-based prediction model in lung adenocarcinomas. Clin Respir J. 2024;18(8):e13753. https://doi.org/10.1111/crj.13753
20. Fan C, González-Prieto R, Kuipers TB, et al. The lncRNA LETS1 promotes TGF-β-induced EMT and cancer cell migration by transcriptionally activating a TβR1-stabilizing mechanism. Sci Signal. 2023;16(790):eadf1947. https://doi.org/10.1126/scisignal.adf1947
21. Yan H, Bu P. Non-coding RNA in cancer. Essays Biochem. 2021;65(4):625-639. https://doi.org/10.1042/EBC20200032
22. Liu JY, Chen YJ, Feng HH, et al. LncRNA SNHG17 interacts with LRPPRC to stabilize c-Myc protein and promote G1/S transition and cell proliferation. Cell Death Dis. 2021;12(11):970. https://doi.org/10.1038/s41419-021-04238-x
23. He M, Wang Y, Cai J, et al. LncRNA DLEU2 promotes cervical cancer cell proliferation by regulating cell cycle and NOTCH pathway. Exp Cell Res. 2021;402(1):112551. https://doi.org/10.1016/j.yexcr.2021.112551
24. Fu L, Xu S, Zhou Y, et al. Knockdown of LncRNA DICER1-AS1 arrests the cell cycle, inhibits cell proliferation, and induces cell apoptosis by regulating CDC5L nuclear transfer in osteosarcoma. Connect Tissue Res. 2023;64(6):519-531. https://doi.org/10.1080/03008207.2023.2223289
25. Sadeghalvad M, Mansouri K, Mohammadi-Motlagh HR, et al. Long non-coding RNA HOTAIR induces the PI3K/AKT/mTOR signaling pathway in breast cancer cells. Rev Assoc Med Bras. 2022;68(4):456-462. https://doi.org/10.1590/1806-9282.20210966
26. Lu T, Zheng C, Fan Z. Cardamonin suppressed the migration, invasion, epithelial mesenchymal transition (EMT) and lung metastasis of colorectal cancer cells by down-regulating ADRB2 expression. Pharm Biol. 2022;60(1):1011-1021. https://doi.org/10.1080/13880209.2022.2069823
27. Liu D, Xia AD, Wu LP, et al. IGF2BP2 promotes gastric cancer progression by regulating the IGF1R-RhoA-ROCK signaling pathway. Cell Signal. 2022;94:110313. https://doi.org/10.1016/j.cellsig.2022.110313
28. Zou X, Guo ZH, Li Q, et al. Long Noncoding RNA LINC00460 Modulates MMP-9 to Promote Cell Proliferation, Invasion and Apoptosis by Targeting miR-539 in Papillary Thyroid Cancer. Cancer Manag Res. 2020;12:199-207. https://doi.org/10.2147/CMAR.S222085
29. Zhao L, Ren C, Fang Y, et al. MiR-490-3p Sponged by lncRNA NEAT1 Can Attenuate Lung Adenocarcinoma Progression by Suppressing the RhoA/ROCK Signaling Pathway. Ann Clin Lab Sci. 2023;53(1):42-51.
30. Gan M, Liu N, Li W, et al. Metabolic targeting of regulatory T cells in oral squamous cell carcinoma: new horizons in immunotherapy. Mol Cancer. 2024;23(1):273. https://doi.org/10.1186/s12943-024-02193-7
31. Mohamad I, Glaun MDE, Prabhash K, et al. Current Treatment Strategies and Risk Stratification for Oral Carcinoma. Am Soc Clin Oncol Educ Book. 2023;43:e389810. https://doi.org/10.1200/EDBK_389810
32. Cao M, Shi E, Wang H, et al. Personalized Targeted Therapeutic Strategies against Oral Squamous Cell Carcinoma. An Evidence-Based Review of Literature. Int J Nanomedicine. 2022;17:4293-4306. https://doi.org/10.2147/IJN.S377816
33. Cao C, Li A, Xu C, et al. Engineering artificial non-coding RNAs for targeted protein degradation. Nat Chem Biol. 2025;21(3):393-401. https://doi.org/10.1038/s41589-024-01719
34. An X, Liu Y. HOTAIR in solid tumors: Emerging mechanisms and clinical strategies. Biomed Pharmacother. 2022;154:113594. https://doi.org/10.1016/j.biopha.2022.113594
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Mongolian National University of Medical Sciences

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.