DFT/TD-DFT investigations on photovoltaic properties of N-Phenyl-N-(thiophen-2-yl)-1H-Pyrrol-2-amine and N,N-diphenylthiophen-2-amine based hexatriyne-thiophene Dye-sensitizers for DSSCs
DOI:
https://doi.org/10.5564/mjc.v26i54.3807Keywords:
N-phenyl-N-(thiophen-2-yl)-1H-pyrrol-2-amine, N,N-diphenylthiophen-2-amine, hexatriyne-thiophene, DFTAbstract
The optoelectronic and charge transfer properties of dyes containing N,N-diphenylthiophen-2-amine (NBBT) or N-phenyl-N-(thiophen-2-yl)-1H-pyrrol-2-amine (NTPA) as donor were computationally studied using density functional theory (DFT) and time dependent- density functional theory (TD-DFT) methods. Thiophene, fused thiophene and bridged thiophene derivatives were incorporated to extend the hexatriyne (LCC) π-linker (hexatriyne-thiophene π-linker) to examine the effect thiophene derivatives on the photovoltaic and optoelectronic properties of the designed dyes. The and values show that insertion of boron into hexatriyne-bridged thiophenes π-linker in NTPA-6 and NBBT-6 dyes traps some of the electrons to be transmitted to the acceptor moiety, which may account for low oscillation strengths observed for the dyes. This subsequently affects the light harvesting efficiency (LHE) and open current circuit (VOC), although, the fractions of electrons transmitted could probably take shorter time ( getting into the conduction band (CB) of semiconductor. The coupling constant (/VRP/) reveals influence on the rate of regeneration of the dyes. Also, slight lowering of EHOMO-ELUMO (ΔEg, eV) in respective NTPA dyes than NBBT dyes indicate more electrons are pushed by N-phenyl-N-(thiophen-2-yl)-1H-pyrrol-2-amine into the π-linker than N,N-diphenylthiophen-2-amine, and incorporation of fused thiophene and bridged thiophenes (except NTPA-6 and NBBT-6) improve the LHE dyes’s ability than PY-3N; thus hexatriyne-thiophene containing dyes exhibit favorable optoelectronic properties, making them good candidates for light absorption in dye sensitized solar cells (DSSCs).
Downloads
275
References
1. 1. Yen Y.S., Chou H.H., Chen Y.C., Hsu C.Y., Lin J.T. (2012) Recent developments in molecule-based organic materials for dye-sensitized solar cells. J. Mater. Chem., 22, 8734-8747, https://doi.org/10.1039/C2JM30362K
2. Birel O., Nadeem S., Duman H. (2017) Porphyrin-based dye-sensitized solar cells (dsscs): A review. J. Fluoresc., 27, 1075-1085, https://doi.org/10.1007/s10895-017-2041-2
3. Semire B., Afolabi S.O., Latona D.F., Oyebamiji A.K., Adeoye M.D., et al (2023) Quantum chemical elucidation on the optoelectronic properties of n2‑(4‑aminophenyl)pyridine‑2,5‑diamine based dyes for solar cells utilization. Chem. Afr., 6, 2649-2663, https://doi.org/10.1007/s42250-023-00674-8
4. Thomas S., Deepak T.G., Anjusree G.S., Arun T.A., Nair S.V., et al. (2014) A review: On counter electrode materials in dye-sensitized solar cells. J. Mater. Chem. A, 2, 4474-4490, https://doi.org/10.1039/C3TA13374E
5. Wu M., Lin X., Wang Y., Wang L., Gu, W., et al. (2012) Economical Pt-free catalysts for counter electrodes of dye-sensitized solar cells. J. Am. Chem. Soc., 134, 7, 3419-3428, https://doi.org/10.1021/ja209657v
6. Al-Ezzi A.S., Ansari M.N.M. (2022) Photovoltaic solar cells: A review. Appl. Syst. Innov., 5, 67. https://doi.org/10.3390/asi5040067
7. Hara K., Horiguchib T., Kinoshitab T., Sayamaa K., Sugiharaa H., et al. (2000) Highly efficient photon-to-electron conversion with mercurochrome-sensitized nanoporous oxide semiconductor solar cells. Solar Energy Materials and Solar Cells. 64(2), 115-134. https://doi.org/10.1016/S0927-0248(00)00065-9
8. Prihanto T., Sudijito S., Denny W, Lilis Y. (2019) Performance improvement of dye sensitized solar cell (DSSCs) based natural dyes. Int. J. Photoenergy, 4384728, https://doi.org/10.1155/2019/4384728
9. Jamshidvand A., Keshavarzi R., Mirkhani V., et al. (2021) A novel Ru (II) complex with high absorbance coefficient: efficient sensitizer for dye-sensitized solar cells. J. Mater. Sci: Mater. Electron, 32, 9345-9356. https://doi.org/10.1007/s10854-021-05598-y
10. Ajayi T.J, Ollengo M., le Roux L., Pillay M.N., Staples R.J., et al. (2019). Heterodimetallic ferrocenyl dithiophosphonate complexes of nickel (II), zinc (II) and cadmium (II) as sensitizers for TiO2-based dye-sensitized solar cells. Chemistry, 25, 7416-7424, https://doi.org/10.1002/slct.201900622
11. Cakar S., Özacar M. (2019) The pH dependent tannic acid and Fe-tannic acid complex dye for dye sensitized solar cell applications. J. Photochem. Photobiol. Chem., 371, 282-291, https://doi.org/10.1016/j.jphotochem.2018.11.030
12. Anik S., Miftahussurur H.P., Abul Kalam B., Anil K.B., Axel G. (2023) Insight on the choice of sensitizers/dyes for dye sensitized solar cells: A review. Dyes and Pigments, 213, 111087, https://doi.org/10.1016/j.dyepig.2023.111087
13. Liu Q., Ren P., Wang X., Li Y. (2018) Experimental and theoretical investigation of photoelectrical properties of tetrabromophenol blue and bromoxylenol blue based solar cell. J. Nanomater., 9720595. https://doi.org/10.1155/2018/9720595
14. Semire B., Abdulsalami I.O., Latona D.F., Oyebamiji A.K., Owonikoko A.D., et a.l (2023) Effect of Seleno-thiophene π-linkers on electronic and photovoltaic properties of boro-phenothiazine donors for DSSCs application: TD-DFT and DFT methods. Russ. J. Phys. Chem. A, 98, 156-168, https://doi.org/10.1134/S0036024424010217
15. Mozaffari S., Nateghi M.R., Zarandi M.B. (2017) An overview of the challenges in the commercialization of dye sensitized solar cells. Renewable and Sustainable Energy Reviews, 71, 675-686, https://doi.org/10.1016/j.rser.2016.12.096
16. Dindorkar S.S., Yadav A. (2022) Insights from density functional theory on the feasibility of modified reactive dyes as dye sensitizers in dye-sensitized solar cell applications. Solar, 2, 12-31, https://doi.org/10.3390/solar2010002
17. Obiyenwa G.K., Semire B., Oyebamiji A.K., Abdulsalami I.O., Latona D.F., et al, (2023) TD-DFT and DFT investigation on electrons transporting efficiency of 2-cyano-2-pyran-4-ylidene-acetic acid and 2-cyanoprop-2-enoic acid as acceptors for thiophene-based π-linkers dye-sensitized solar cells. Eurasian J. Chem., 111(3), 69-82. https://doi.org/10.31489/2959-0663/3-23-9
18. Zdyb A., Krawczyk S. (2014) Adsorption and electronic states of morin on TiO2 nanoparticles. Chem. Phys., https://doi.org/10.1016/j.chemphys.2014.08.009
19. Ibrahim O.A., Bello I.A., Semire B., Bolarinwa H.S., Boyo A. (2016) Purity-performance relationship of anthocyanidins as sensitizer in dye-sensitized solar cells. Int. J. Phys. Sci., 11(8), 104-111. https://doi.org/10.5897/IJPS2016.4468
20. Liu B., Wang R., Mi W., Li X., Yu H. (2012) Novel branched coumarin dyes for dye-sensitized solar cells: significant improvement in photovoltaic performance by simple structure modification. J. Mater. Chem., 22, 15379-15387,
https://doi.org/10.1039/C2JM32333H
21. Britel O., Fitri A., Benjelloun A.T. (2023) New carbazole-based dyes for efficient dye-sensitized solar cells: a DFT insight. Struct. Chem., 34, 1827-1842 https://doi.org/10.1007/s11224-023-02122-2
22. William O.A., Obiyenwa K.G., Abubakar M.K., Salawua O.W., Semire B., (2024) Molecular design and optoelectronic investigations of phenothiazine D-A-π-A dye sensitizers using DFT/TD-DFT method for potential solar cell application. Phys. Chem. Res., 12(4), 901-918. https://doi.org/10.22036/pcr.2024.444731.2482
23. Semire B., Oyebamiji A.K., Odunola O.A. (2017) Tailoring of energy levels in (2Z)-2-cyano-2-[2-[(E)-2-[2-[(E)-2-(p-tolyl)vinyl]thieno[3,2-b]thiophen-5-yl]vinyl]pyran-4-ylidene]aceticacid derivatives via conjugate bridge and luorination of acceptor units for effective D–π–A dye-sensitized solar cells: DFT–TDDFT approach. Res. Chem. Intermed., 43, 1863-1879. https://doi.org/10.1007/s11164-016-2735-0
24. Hailu Y.M., Pham-Ho M.P., Nguyen M.T., Jiang J.C. (2020) Silole and selenophene-based D-π-A dyes in dye-sensitized solar cells: Insights from optoelectronic and regeneration properties. Dyes Pigm., 176, 108243.
doi.org/10.1016/j.dyepig.2020.108243
25. Akram M., Siddique S.A., Iqbal J., Hussain R., Mehboob M.Y., et al. (2021) End-capped engineering of bipolar diketopyrrolopyrrole based small electron acceptor molecules for high performance organic solar cells. Comput. Theor. Chem., 1201, 113242
26. Mustafa FM., Abdel-Latif MK., Abdel-Khalek AA., Kühn O. (2023) Efficient D-π-π-A-type dye sensitizer based on a benzothiadiazole moiety: A computational study. Molecules, 28, 5185. https://doi.org/10.3390/molecules28135185
27. Semire B., Obiyenwa K.G., William O.A., Abubakar M.K., Godwin M.A., et al. (2024) Manipulation of 2-[2-(10H-phenothiazin-3-yl)thiophen-3-yl]10H-phenothiazine based D-A-π-A dyes for effective tuning of optoelectronic properties and intramolecular charge transfer in dye sensitized solar cells: A DFT/TD-DFT Approach. Adv. J. Chem. A, 7(1), 41-58, https://doi.org/10.48309/ajca.2024.412442.1400
28. Afolabi S.O, Semire B, Akiode O.K, Afolabi T.A, Adebayo G.A, et al. (2020) Design and theoretical study of phenothiazinebased low bandgap dye derivatives as sensitizers in molecular photovoltaics. Opt. Quantum Electron., 52, 476. https://doi.org/10.1007/s11082-020-02600-5
29. Salimi Beni A.R., Karami M., Hosseinzadeh B., Ghahary R. (2018) New organic dyes with diphenylamine core for dyesensitized solar cells. J. Mater. Sci., 29, 6323-6336. https://doi.org/10.1007/s10854-018-8612-4
30. Afolabi S.O., Semire B., Idowu M.A. (2021) Electronic and optical properties’ tuning of phenoxazine-based D-A2-π-A1 organicdyes for dye-sensitized solar cells. DFT/TDDFT investigations. Heliyon. 7(4) e06827. https://doi.org/10.1016/j.heliyon.2021.e06827
31. Buene A.F., Boholm N., Hagfeldt A., Hoff B. (2019) Effect of furan π-spacer and triethylene oxide methyl ether substituents on performance of phenothiazine sensitizers in dye-sensitized solar cells. New J. Chem., 43, 9403-9410. https://doi.org/10.1039/C9NJ01720H
32. Ouared I., Rekis M., Trari M. (2021) Phenothiazine based organic dyes for dye sensitized solar cells: A theoretical study on the role of π-spacer. Dyes Pigm., 190, 109330. https://doi.org/10.1016/j.dyepig.2021.109330
33. Consiglio G., Gorcyński A., Petralia S., Forte G. (2023) Predicting the dye-sensitized solar cell performance of novel linear carbon chain-based dyes: Insights from DFT simulations. Dalton Trans., 52, 15995-16004, https://doi.org/10.1039/D3DT01856C
34. Casari C.S., Tommasini M., Tykwinski R.R., Milani A. (2016) Carbon-atom wires: 1-D systems with tunable properties. Nanoscale, 8, 4414-4435, https://doi.org/10.1039/C5NR06175J
35. Consiglio G., Gorcyński A., Petralia S. Forte G. (2023b) Computational study of linear carbon chain based organic dyes for dye sensitized solar cells. RSC Adv., 13, 1019-1030, https://doi.org/10.1039/D2RA06767F
36. Spartan 14 Wavefunction, INC, Irvine, CA. 2015.
37. Domingo L.R., Ríos-Gutiérrez M., Pérez P. (2016) Applications of the conceptual density functional theory indices to organic chemistry reactivity. Molecules, 21, 748, https://doi.org/10.3390/molecules21060748
38. Liu X., Cole J.M., Low K.S. (2013) Molecular origins of dye aggregation and complex formation effects in coumarin 343. J. Phys. Chem. C, 117, 14723-14730, https://doi.org/10.1021/jp4024266
39. Ren P., Sun C., Shi Y., Song P., Yang Y., Li Y. (2019) Global performance evaluation of solar cells using two models: from charge-transfer and recombination mechanisms to photoelectric properties. J. Mater. Chem. C, 7(7), 1934–1947,
https://doi.org/10.1039/C8TC05660A
40. Muhammed K.A., Anthony W.O., Obiyenwa K.G., Salawu O.W., Semire B. (2025) Phenyl-9H-Phenothiazine and phenyl-9H-Phenoxazinebased metal free dye-sensitizers (D-A2-π-A1) with thieno[3,4-b]pyrazine auxiliary acceptor for dyesensitized solar cell applications: DFT and TD-DFT computational studies. J. Sulf. Chem., https://doi.org/10.1080/17415993.2025.2463490
41. Olatunde A.M., Adedokun N.O., Owonikoko A.D., Obiyenwa G.K., Anthony W.O., et al. (2024) Optoelectronic of properties of N1-[4-(diethylamino)phenyl]-N4,N4-diethyl-N1-(thiophen-2-yl)benzene-1,4-diamine-based (D-A2-π-A) dyes with enzothiadiazole /dihydrothieno[3,4-b][1,4]dioxine as auxiliary acceptor for DSSCs applications: DFT/TD-DFT approach. Russ. J. Gen. Chem., 94(10), 2710-2720, https://doi.org/10.1134/S1070363224100165
42. Delgado-Montiel T., Baldenebro-López J., Soto-Rojo R., Glossman-Mitnik D., (2020) Theoretical study of the effect of π-bridge on optical and electronic properties of carbazole-based sensitizers for DSSCs. Molecules, 25, 3670, https://doi:10.3390/molecules25163670
43. Abdel Aal S., Awadh D. (2023) The effect of central transition metals and electron-donating substituent on the performances of dye/TiO2 interface for dye-sensitized solar cells applications. J. Mol. Graphics Model, 123, 108525. https://doi.org/10.1016/j.jmgm.2023.108525
44. Patil D.S., Avhad K.C., Sekar N. (2018) Linear correlation between DSSC efficiency, intramolecular charge transfer characteristics, and NLO properties – DFT approach. Computational and Theoretical Chem., 1138, 75-83. https://doi.org/10.1016/j.comptc.2018.06.006
45. Kacimi R., Raftani M., Abram T., Azaid A., Ziyat H., et al. (2021) Theoretical design of D-π-A system new dyes candidate for DSSC application. Heliyon, 7(6), e07171. https://doi.org/10.1016/j.heliyon.2021.e07171
46. Irfan A. (2013) Quantum chemical investigations of electron injection in triphenylamine-dye sensitized TiO2 used in dye sensitized solar cells. Mater. Chem. Phys., 142(1), 238-247. https://doi.org/10.1016/j.matchemphys.2013.07.011
47. Janjua MRSA. (2022) All‐small‐molecule organic solar cells with high fill factor and enhanced open‐circuit voltage with 18.25% PCE: Physical insights from quantum chemical calculations. Spectrochim. Acta A, 15, 279, 121487, https://doi.org/10.1016/j.saa.2022.121487
48. Khan M.U., Abida A.A., Hassan A.U.I., Alshehri S.M., Sohail A. (2024) DFT simulations of photovoltaic parameters of dye‐sensitized solar cells with new efficient sensitizer of indolo[3,2‐b]carbazole complexes. Energy Sci. Eng., 1-23. https://doi.org/10.1002/ese3.1834
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Kehinde Gabriel Obiyenwa, Abimbola Modupe Olatunde, Dayo Felix Latona, Willaim Ojoniko Anthony, Pelumi Gabriel Adebayo, Banjo Semire

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright on any research article in the Mongolian Journal of Chemistry is retained by the author(s).
The authors grant the Mongolian Journal of Chemistry a license to publish the article and identify itself as the original publisher.

Articles in the Mongolian Journal of Chemistry are Open Access articles published under a Creative Commons Attribution 4.0 International License CC BY.
This license permits use, distribution and reproduction in any medium, provided the original work is properly cited.