Engineering polyamide materials: s-triazine framework with specialized bulky side chains for advanced applications
DOI:
https://doi.org/10.5564/mjc.v25i51.3104Keywords:
Biosensors, Coumarin, Polyamides, Polycondensation, s-Triazine, Thermogravimetric analysisAbstract
The focus of this study is on the synthesis of organic fluorescent and thermally stable polyamides using an s-triazine frame. Coumarin and n-phenyl anthranilic acid have been utilized as bulky pendent groups in the synthesis of the monomer, resulting in polyamides with two groups that enhance stability and fluorescence. The synthesized polyamides have been characterized using a variety of techniques. The thermal stability of the polyamides has been studied using thermogravimetric analysis. These polyamides offer appealing features such as fluorescence and enhanced thermal stability, making them significant for a wide range of applications, including biosensors, clean energy technologies, and explosive sensing.
Downloads
158
References
Liou G.S., Yen H.J. (2012) Polyimides in polymer science: A comprehensive reference, 5, Elsevier, 497-535. https://doi.org/10.1016/B978-0-444-53349-4.00149-7
Der-Jang L., Kung-Li W., Ying-Chi H., Kueir-Rarn L., Juin-Yih L., Chang-Sik H. (2012) Advanced polyimide materials: Syntheses, physical properties and applications. Progress in Polymer Science, 37, 907-974. https://doi.org/10.1016/j.progpolymsci.2012.02.005
Bazzar M., Ghaemy M., Alizadeh R. (2012) Novel fluorescent light-emitting polymer composites bearing 1,2,4-triazole and quinoxaline moieties: Reinforcement and thermal stabilization with silicon carbide nanoparticles by epoxide functionalization. Polymer Degradation and Stability, 97, 1690-1703. https://doi.org/10.1016/j.polymdegradstab.2012.06.018
Tamboli A.B., Kalshetti B.S., Ghodke S.D., Diwate A.V., Maldar N.N. (2020) Synthesis and characterization of semi-aromatic polyamides containing heterocyclic 1,3,5 s-triazine and methylene spacer group for thermally stable and colloidal property. Designed Monomers and Polymers, 23(1), 93-105. https://doi.org/10.1080/15685551.2020.1795435
Guipeng Y., Cheng L., Jinyan W., Xiuping L., Xigao J. (2010) Heat-resistant aromatic s-triazine-containing ring-chain polymers based on bis(ether nitrile)s: Synthesis and properties. Polymer Degradation and Stability, 95, 2445-2452. https://doi.org/10.1016/j.polymdegradstab.2010.08.011
Mallakpour S., Rafiee Z. (2007) Preparation and characterization of new photoactive polyamides containing 4-(4-dimethylaminophenyl) urazole units. Journal of Applied Polymer Science, 103, 947-954. https://doi.org/10.1002/app.25258
Sagar A.D., Shingte R.D., Wadgaonkar P.P., Salunkhe M.M. (2001) Polyamides containing s-triazine rings and fluorene “cardo” groups: Synthesis and characterization. European Polymer Journal, 37, 1493-1498. https://doi.org/10.1016/S0014-3057(00)00194-4
Mishra N., Vasava D. (2020) Recent developments in s-triazine holding phosphorus and nitrogen flame-retardant materials. Journal of Fire Sciences, 38(6), 1-22. https://doi.org/10.1177/0734904120952347
Gu L., Chen G., Yao Y. (2014) Two novel phosphorus-nitrogen-containing halogen-free flame retardants of high performance for epoxy resin. Polym. Degrad. Stab., 108, 68-75. https://doi.org/10.1016/j.polymdegradstab.2014.05.030
Prokhorov A.M., Prokhorova P.E. (2015) Triazines and tetrazines. Prog. Heterocycl. Chem., 27, 451-464. https://doi.org/10.1016/B978-0-08-100024-3.00014-3
Modh J.V., Patel S.K. (2020) Synthesis, characterization and study of fluorescent-high performance polyesters. Rasayan Journal of Chemistry, 13(3), 1458-1471. https://doi.org/10.31788/RJC.2020.1335683
Yu C.M., Wu Y.L., Zeng F., Li X.Z., Shi J.B., et al. (2013) Hyperbranched polyester-based fluorescent probe for histone deacetylase via aggregation-induced emission. Biomacromolecules, 14, 4507−4514. https://doi.org/10.1021/bm401548u
Halim M.A. (2013) Harnessing sun’s energy with quantum dots based next-generation solar cell. Nanomaterials, 3, 22-47. https://doi.org/10.3390/nano3010022
Jeong J.W., Kwon Y., Han Y.S., Park L.S. (2005) Electroluminescent property and photolithographic process of photosensitive random copolymers. Mol. Cryst. Liq. Cryst., 443, 59-68. https://doi.org/10.5402/2012/352759
Trenor S.R., Shultz A.R., Love B.J., Long T.E. (2004) Coumarins in polymers: from light harvesting to photo-cross-linkable tissue scaffolds. Chemical Reviews, 104, 3059-3077. https://doi.org/10.1021/cr030037c
Wagner B.D. (2009) The use of coumarins as environmentally sensitive fluorescent probes of heterogeneous inclusion systems. Molecules, 14(1) 210-237. https://doi.org/10.3390/molecules14010210
Nechifor M. (2009) Synthesis and properties of some aromatic polyamides with coumarin chromophores. Reactive & Functional Polymers, 69, 27-35. https://doi.org/10.1016/j.reactfunctpolym.2008.10.006
Cao D., Liu Z., Verwilst P., Koo S., Jangjili P., et al. (2019) Coumarin-based small-molecule fluorescent chemosensors. Chemical Review, 119, 10403-10519. https://doi.org/10.1021/acs.chemrev.9b00145
Defize T., Thomassin J.M., Ottevaere H., Malherbe C., Eppe G., et al. (2019) Photo-cross-linkable coumarin-based poly(ε-caprolactone) for light-controlled design and reconfiguration of shape-memory polymer networks. Macromolecules, 52, 444-456. https://doi.org/10.1021/acs.macromol.8b02188
Modh J.V. (2023) Synthetic protocols and significance of heterocyclic fluorescent reinforcing polymers: A comprehensive review. Journal of Advanced Scientific Research, 14, 9-39. https://doi.org/10.55218/JASR.202314202
Gindre D., Liopoulos K., Krupka O., Evrard M., Champigny E., et al. (2016) Coumarin-containing polymers for high density non-linear optical data storage. Molecules, 21(2), 147. https://doi.org/10.3390/molecules21020147
Zhang L.Z., Li Y., Liang Z.X., Yu Q.S., Cai Z.G. (1999) New cross-linked polymer systems with high and stable optical nonlinearity. React. Funct. Polym., 40, 255-262. https://doi.org/10.1016/S1381-5148(98)00048-0
Mizoguchi K., Hasegawa E. (1996) Polymers for advanced technologies, photoactive polymers applied to advanced microelectronic devices. Polym. Adv. Technol., 7, 471-477. https://doi.org/10.1002/(SICI)1099-1581(199605)7:5/6<471::AID-PAT534>3.3.CO;2-I
Biryan F. (2020) Triazole-coumarin centered star-shaped polymer: Structural characterizations and electrical properties of graphene composites. Journal of Molecular Structure, 1222, 128926. https://doi.org/10.1016/j.molstruc.2020.128926
Zhou J., Wang J., Jin K., Sun J., Fang Q. (2016) s-Triazine-based functional monomers with thermocrosslinkable propargyl units: Synthesis and conversion to the heat-resistant polymers. Polymer, 102, 301-307. https://doi.org/10.1016/j.polymer.2016.09.027
Nizama S.K., Mishra N., Vasava D., Patel S.K. (2021) Hetero-aromatic-fluorescent polyesters: Synthesis, characterization and physical study. Journal of Advance Scientific Research, 12, 146-153.
Vasava D.V., Patel S.K. (2016) Synthesis, characterization and study of thermally stable fluorescent polyesters. Int. Lett. Chem. Phys. Astron., 70, 48-62. https://doi.org/10.18052/www.scipress.com/ILCPA.70.48
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Deep Bhalani, Sabir Khan Pathan, Jignasa V.Modh
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright on any research article in the Mongolian Journal of Chemistry is retained by the author(s).
The authors grant the Mongolian Journal of Chemistry a license to publish the article and identify itself as the original publisher.
Articles in the Mongolian Journal of Chemistry are Open Access articles published under a Creative Commons Attribution 4.0 International License CC BY.
This license permits use, distribution and reproduction in any medium, provided the original work is properly cited.