Engineering polyamide materials: s-triazine framework with specialized bulky side chains for advanced applications

Authors

DOI:

https://doi.org/10.5564/mjc.v25i51.3104

Keywords:

Biosensors, Coumarin, Polyamides, Polycondensation, s-Triazine, Thermogravimetric analysis

Abstract

The focus of this study is on the synthesis of organic fluorescent and thermally stable polyamides using an s-triazine frame. Coumarin and n-phenyl anthranilic acid have been utilized as bulky pendent groups in the synthesis of the monomer, resulting in polyamides with two groups that enhance stability and fluorescence. The synthesized polyamides have been characterized using a variety of techniques. The thermal stability of the polyamides has been studied using thermogravimetric analysis. These polyamides offer appealing features such as fluorescence and enhanced thermal stability, making them significant for a wide range of applications, including biosensors, clean energy technologies, and explosive sensing.

Downloads

Download data is not yet available.
Abstract
54
PDF 41

References

Liou G.S., Yen H.J. (2012) Polyimides in polymer science: A comprehensive reference, 5, Elsevier, 497-535. https://doi.org/10.1016/B978-0-444-53349-4.00149-7

Der-Jang L., Kung-Li W., Ying-Chi H., Kueir-Rarn L., Juin-Yih L., Chang-Sik H. (2012) Advanced polyimide materials: Syntheses, physical properties and applications. Progress in Polymer Science, 37, 907-974. https://doi.org/10.1016/j.progpolymsci.2012.02.005

Bazzar M., Ghaemy M., Alizadeh R. (2012) Novel fluorescent light-emitting polymer composites bearing 1,2,4-triazole and quinoxaline moieties: Reinforcement and thermal stabilization with silicon carbide nanoparticles by epoxide functionalization. Polymer Degradation and Stability, 97, 1690-1703. https://doi.org/10.1016/j.polymdegradstab.2012.06.018

Tamboli A.B., Kalshetti B.S., Ghodke S.D., Diwate A.V., Maldar N.N. (2020) Synthesis and characterization of semi-aromatic polyamides containing heterocyclic 1,3,5 s-triazine and methylene spacer group for thermally stable and colloidal property. Designed Monomers and Polymers, 23(1), 93-105. https://doi.org/10.1080/15685551.2020.1795435

Guipeng Y., Cheng L., Jinyan W., Xiuping L., Xigao J. (2010) Heat-resistant aromatic s-triazine-containing ring-chain polymers based on bis(ether nitrile)s: Synthesis and properties. Polymer Degradation and Stability, 95, 2445-2452. https://doi.org/10.1016/j.polymdegradstab.2010.08.011

Mallakpour S., Rafiee Z. (2007) Preparation and characterization of new photoactive polyamides containing 4-(4-dimethylaminophenyl) urazole units. Journal of Applied Polymer Science, 103, 947-954. https://doi.org/10.1002/app.25258

Sagar A.D., Shingte R.D., Wadgaonkar P.P., Salunkhe M.M. (2001) Polyamides containing s-triazine rings and fluorene “cardo” groups: Synthesis and characterization. European Polymer Journal, 37, 1493-1498. https://doi.org/10.1016/S0014-3057(00)00194-4

Mishra N., Vasava D. (2020) Recent developments in s-triazine holding phosphorus and nitrogen flame-retardant materials. Journal of Fire Sciences, 38(6), 1-22. https://doi.org/10.1177/0734904120952347

Gu L., Chen G., Yao Y. (2014) Two novel phosphorus-nitrogen-containing halogen-free flame retardants of high performance for epoxy resin. Polym. Degrad. Stab., 108, 68-75. https://doi.org/10.1016/j.polymdegradstab.2014.05.030

Prokhorov A.M., Prokhorova P.E. (2015) Triazines and tetrazines. Prog. Heterocycl. Chem., 27, 451-464. https://doi.org/10.1016/B978-0-08-100024-3.00014-3

Modh J.V., Patel S.K. (2020) Synthesis, characterization and study of fluorescent-high performance polyesters. Rasayan Journal of Chemistry, 13(3), 1458-1471. https://doi.org/10.31788/RJC.2020.1335683

Yu C.M., Wu Y.L., Zeng F., Li X.Z., Shi J.B., et al. (2013) Hyperbranched polyester-based fluorescent probe for histone deacetylase via aggregation-induced emission. Biomacromolecules, 14, 4507−4514. https://doi.org/10.1021/bm401548u

Halim M.A. (2013) Harnessing sun’s energy with quantum dots based next-generation solar cell. Nanomaterials, 3, 22-47. https://doi.org/10.3390/nano3010022

Jeong J.W., Kwon Y., Han Y.S., Park L.S. (2005) Electroluminescent property and photolithographic process of photosensitive random copolymers. Mol. Cryst. Liq. Cryst., 443, 59-68. https://doi.org/10.5402/2012/352759

Trenor S.R., Shultz A.R., Love B.J., Long T.E. (2004) Coumarins in polymers: from light harvesting to photo-cross-linkable tissue scaffolds. Chemical Reviews, 104, 3059-3077. https://doi.org/10.1021/cr030037c

Wagner B.D. (2009) The use of coumarins as environmentally sensitive fluorescent probes of heterogeneous inclusion systems. Molecules, 14(1) 210-237. https://doi.org/10.3390/molecules14010210

Nechifor M. (2009) Synthesis and properties of some aromatic polyamides with coumarin chromophores. Reactive & Functional Polymers, 69, 27-35. https://doi.org/10.1016/j.reactfunctpolym.2008.10.006

Cao D., Liu Z., Verwilst P., Koo S., Jangjili P., et al. (2019) Coumarin-based small-molecule fluorescent chemosensors. Chemical Review, 119, 10403-10519. https://doi.org/10.1021/acs.chemrev.9b00145

Defize T., Thomassin J.M., Ottevaere H., Malherbe C., Eppe G., et al. (2019) Photo-cross-linkable coumarin-based poly(ε-caprolactone) for light-controlled design and reconfiguration of shape-memory polymer networks. Macromolecules, 52, 444-456. https://doi.org/10.1021/acs.macromol.8b02188

Modh J.V. (2023) Synthetic protocols and significance of heterocyclic fluorescent reinforcing polymers: A comprehensive review. Journal of Advanced Scientific Research, 14, 9-39. https://doi.org/10.55218/JASR.202314202

Gindre D., Liopoulos K., Krupka O., Evrard M., Champigny E., et al. (2016) Coumarin-containing polymers for high density non-linear optical data storage. Molecules, 21(2), 147. https://doi.org/10.3390/molecules21020147

Zhang L.Z., Li Y., Liang Z.X., Yu Q.S., Cai Z.G. (1999) New cross-linked polymer systems with high and stable optical nonlinearity. React. Funct. Polym., 40, 255-262. https://doi.org/10.1016/S1381-5148(98)00048-0

Mizoguchi K., Hasegawa E. (1996) Polymers for advanced technologies, photoactive polymers applied to advanced microelectronic devices. Polym. Adv. Technol., 7, 471-477. https://doi.org/10.1002/(SICI)1099-1581(199605)7:5/6<471::AID-PAT534>3.3.CO;2-I

Biryan F. (2020) Triazole-coumarin centered star-shaped polymer: Structural characterizations and electrical properties of graphene composites. Journal of Molecular Structure, 1222, 128926. https://doi.org/10.1016/j.molstruc.2020.128926

Zhou J., Wang J., Jin K., Sun J., Fang Q. (2016) s-Triazine-based functional monomers with thermocrosslinkable propargyl units: Synthesis and conversion to the heat-resistant polymers. Polymer, 102, 301-307. https://doi.org/10.1016/j.polymer.2016.09.027

Nizama S.K., Mishra N., Vasava D., Patel S.K. (2021) Hetero-aromatic-fluorescent polyesters: Synthesis, characterization and physical study. Journal of Advance Scientific Research, 12, 146-153.

Vasava D.V., Patel S.K. (2016) Synthesis, characterization and study of thermally stable fluorescent polyesters. Int. Lett. Chem. Phys. Astron., 70, 48-62. https://doi.org/10.18052/www.scipress.com/ILCPA.70.48

Downloads

Published

2024-05-13

How to Cite

Bhalani, D., Pathan, S. K., & V.Modh, J. (2024). Engineering polyamide materials: s-triazine framework with specialized bulky side chains for advanced applications. Mongolian Journal of Chemistry, 25(51). https://doi.org/10.5564/mjc.v25i51.3104

Issue

Section

Articles