Influence of processing on tannin, flavonoid, polyphenol content, and antioxidant activity of Ivy gourd (Coccinia grandis (L.) Voigt) leaf tea

Authors

DOI:

https://doi.org/10.5564/mjc.v26i53.3774

Keywords:

antioxidant activity, Coccinia grandis (L.) Voigt, polyphenols, tea

Abstract

This study investigates factors affecting tea production from the leaves of Ivy gourd (Coccinia grandis (L.) Voigt) using a natural fermentation method. To evaluate the tea quality, key parameters such as tannin, flavonoid, polyphenol content, and antioxidant activity were monitored throughout the research. The study examined different factors, including leaf moisture loss prior to fermentation, the fermentation temperature and duration, the roasting temperature, and the final product moisture content. The results indicated that drying the leaves to 80% moisture content facilitated the natural fermentation process at 40°C for 5 h. Roasting the tea at 100°C to a final moisture of 8% maintained a stable content of tannin, flavonoid, polyphenol, and oxidation capacity.

Downloads

Abstract
96
PDF
104

Author Biography

Tran Thanh Truc, Institute of Food and Biotechnology, Can Tho University, Can Tho City 94000, Vietnam

School of Graduate, Can Tho University, Can Tho City 94000, Vietnam

References

1. Trang D.T.X., Linh V.C., and Lan N.T.A. (2018) Antihyperglycemic, antioxidant, and antihyperlipidemic activities of extract from Coccinia grandis (L.) Voigt. leaves by methanol on alloxan induced hyperglycemic mice. Vietnam J. Biotechnol., 16(2), 311-318. https://doi.org/10.15625/1811-4989/16/2/13443

2. Orech F.O., Akenga T., Ochora J., Friis H., and Aagaard-Hansen J. (2005) Potential toxicity of some traditional leafy vegetables consumed in Nyang’oma Division, Western Kenya. Afri. J. Food Agric. Nutr. Dev., 5(1), 9. https://doi.org/10.18697/ajfand.8.1575

3. Pramanik A., Paik D., Naskar K., and Chakraborti T. (2017) Leaf extract exhibits an antileishmanial effect through pro-inflammatory response: An in vitro study. Curr. Microbiol., 74(1), 59-67. https://doi.org/10.1007/s00284-016-1151-4

4. Umamaheswari M. and Chatterjee T.K. (2007) In vitro antioxidant activities of the fractions of Coccinia grandis L. leaf extract. Afr. J. Tradit. Complement Altern. Med., 5(1), 61-73. https://doi.org/10.4314/ajtcam.v5i1.31258

5. Satheesh L.S. and Murugan K. (2011) Antimicrobial activity of protease inhibitor from leaves of Coccinia grandis (L.) Voigt. Indian J. Exp. Biol., 49(5), 366-374.

6. Munasinghe M.A., Abeysena C., Yaddehige I.S., Vidanapathirana T., and Piyumal K.P. (2011) Blood sugar lowering effect of Coccinia grandis (L.) J. Voigt: Path for a new drug for diabetes mellitus. Exp. Diabetes Res., 2011, 978762. https://doi.org/10.1155/2011/978762

7. Singh G., Gupta P., Rawat P., Puri A., Bhatia G., et al. (2007) Antidyslipidemic activity of polyprenol from Coccinia grandis in high-fat diet-fed hamster model. Phytomedicine, 14(12), 792-794. https://doi.org/10.1016/j.phymed.2007.06.008

8. Yang C.S. and Landau J.M. (2000) Effects of tea consumption on nutrition and health. J. Nutr., 130(10), 2409-2412. https://doi.org/10.1093/jn/130.10.2409

9. Yang Z., Baldermann S., and Watanabe, N. (2013) Recent studies of the volatile compounds in tea. Food Res. Int., 53(2), 585-599.

https://doi.org/10.1016/j.foodres.2013.02.011

10. Dufresne C.J. and Farnworth E.R. (2001) A review of latest research findings on the health promotion properties of tea. J. Nutr. Biochem., 12(7), 404-421. https://doi.org/10.1016/s0955-2863(01)00155-3

11. Cabrera C., Artacho R., and Giménez R. (2006) Beneficial effects of green tea - A review. J. Am. Coll. Nutr., 25(2), 79-99.

https://doi.org/10.1080/07315724.2006.10719518

12. Namal-Senanayake, S.P.J. (2013) Green tea extract: Chemistry, antioxidant properties and food applications – A review. J. Funct. Foods, 5(4), 1529-1541.

https://doi.org/10.1016/j.jff.2013.08.011

13. Sang S., Lambert J.D., Ho C.T., and Yang C.S. (2011) The chemistry and biotransformation of tea constituents. Pharmacol. Res., 64(2), 87-99. https://doi.org/10.1016/j.phrs.2011.02.007

14. Lorenzo J.M. and Munekata P.E.S. (2016) Phenolic compounds of green tea: Health benefits and technological application in food. Asian Pac. J. Trop. Biomed., 6(8), 709-719. https://doi.org/10.1016/j.apjtb.2016.06.010

15. Reto M., Figueira M.E., Filipe H.M., and Almeida C.M. (2007) Chemical composition of green tea (Camellia sinensis) infusions commercialized in Portugal. Plant Foods Hum. Nutri., 62(4), 139. https://doi.org/10.1007/s11130-007-0054-8

16. Chacko S.M., Thambi P.T., Kuttan R., and Nishigaki I. (2010) Beneficial effects of green tea: a literature review. Chin. Med., 5(1), 13.

https://doi.org/10.1186/1749-8546-5-13

17. Dufresne C. and Farnworth E. (2000) Tea, Kombucha, and health: A review. Food Res. Int., 33(6), 409-421. https://doi.org/10.1016/S0963-9969(00)00067-3

18. Samanta T., Cheeni V., Das S., Roy A.B., Ghosh B.C., et al. (2015) Assessing biochemical changes during standardization of fermentation time and temperature for manufacturing quality black tea. J. Food Sci. Technol., 52(4), 2387-2393. https://doi.org/10.1007/s13197-013-1230-5

19. Drynan J.W., Clifford M.N., Obuchowicz J., and Kuhnert N. (2010) The chemistry of low molecular weight black tea polyphenols. Nat. Prod. Rep., 27(3), 417-462. https://doi.org/10.1039/b912523j

20. Kim Y., Goodner K.L., Park J.D., Choi J., and Talcott S.T. (2011) Changes in antioxidant phytochemicals and volatile composition of Camellia sinensis by oxidation during tea fermentation. Food Chem., 129(4), 1331-1342.

https://doi.org/10.1016/j.foodchem.2011.05.012

21. Tan J., Dai W., Lu M., Lu H., Guo L., et al. (2016) Study of the dynamic changes in the non-volatile chemical constituents of black tea during fermentation processing by a non-targeted metabolomics approach. Food Res. Int., 79, 106-113. https://doi.org/10.1016/j.foodres.2015.11.018

22. Tanaka T. and Matsuo Y. (2020) Production mechanisms of black tea polyphenols. Chem. Pharm. Bull., 68(12), 1131-1142. https://doi.org/10.1248/cpb.c20-00295

23. Hua J., Yuan H., Yao Y., Jiang Y., and Wang J. (2018) The effects of temperature on the color and pigment content of tea fermentation leaves. Trans. Chin. Soc. Agric. Eng., 34(12), 300-308.

24. Quan Q. (2011) Processing equipment and application technology of strip black tea. J. China Tea, 33, 16-18.

25. Martin O., Okinda O.P., and Richard M.O. (2002) Changes in the chemical and sensory quality parameters of black tea due to variations of fermentation time and temperature. Food Chem., 75(4), 395-404. https://doi.org/10.1016/S0308-8146(01)00223-0

26. Hua J.J., Yuan H.B., Jiang Y.W., Liu P., and Wang W.W. (2013) Research progress on changes of physical and chemical characteristics of fresh leaves during withering and their control techniques. J. Tea Sci., 33, 465-472.

27. Qian Y.F., Ye Y., Zhou X.F., and Wang B. (2012) Analysis on the present research situation of black tea fermentation technology. Sci. Technol. Food Ind., 33, 388-392.

28. Pan K., Shen Q., Shen D., and Du X. (2014) Changes in sensory and physico-chemical characteristics of tea leaves during aerobic fermentation for black tea. J. Food Sci., 35, 198-201.

29. Pan K., Feng L., Chen J., and Du X. (2015) Analysis of aroma compounds in black tea ventilated with oxygen for different durations during the fermentation process by head space-solid phase micro-extraction coupled with gas chromatography-mass spectrometry. J. Food Sci., 36, 181-196.

30. Okinda O.P. and Martin O. (2001) Comparative responses in plain black tea quality parameters of different tea clones to fermentation temperature and duration. Food Chem., 72(3), 319-327. https://doi.org/10.1016/S0308-8146(00)00232-6

31. Premakumari K. B., Siddiqua A., Sultana R., and Savitha V. (2010) Antioxidant activity and estimation of total phenolic content of Muntingia calabura by colorimetry. Int. J. ChemTech Res., 2(1), 205-208.

32. Fatemeh S.R., Saifullah R., Abbas F.M.A., and Azhar M.E. (2012) Total phenolics, flavonoids and antioxidant activity of banana pulp and peel flours: Influence of variety and stage of ripeness. Int. Food Res. J., 19(3), 1041-1046.

33. Tambe V.D. and Bhambar R.S. (2014) Estimation of total phenol, tannin, alkaloid and flavonoid in Hibiscus tiliaceus Linn. wood extracts. Res. Rev.: J. Pharmacogn. Phytochem., 2(4), 41-47.

34. Chang C.C., Yang M.H., Wen H.M., and Chern J.C. (2002) Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J. Food and Drug Anal., 10(3), 178-182. https://doi.org/10.38212/2224-6614.2748

35. Xu C., Liang L., Yang T., Fan Y., Mao X., et al. (2021) Studies of quality development and major chemical composition of green tea processed from tea with different shoot maturity. LWT - Food Sci. Technol., 142, 111055.

https://doi.org/10.1016/j.lwt.2021.111055

36. Anić M., Kontić J.K., Rendulić N., Čarija M., Osrečak M., et al. (2024) Evolution of leaf chlorophylls, carotenoids and phenolic compounds during vegetation of some croatian indigenous red and white grape cultivars. Plants, 13(7), 971. https://doi.org/10.3390/plants13070971

37. Zagoskina N.V., Zubova M.Y., Nechaeva T.L., Kazantseva V.V., Goncharuk E.A., et al. (2023) Polyphenols in plants: Structure, biosynthesis, abiotic stress regulation, and practical applications (review). Int. J. Mol. Sci., 24(18), 13874. https://doi.org/10.3390/ijms241813874

38. Aaqil M., Peang C., Kamal A., Nawaz T., Zhang F., et al. (2023) Tea harvesting and processing techniques and its effect on phytochemical profile and final quality of black tea: A review. Foods, 12(24), 4467. https://doi.org/10.3390/foods12244467

39. Turkmen N., Sarı F., Velioglu Y.S. (2009). Factors affecting polyphenol content and composition of fresh and processed tea leaves. Akademik Gıda, 7(6), 29-40.

40. Zhu J., Wang J., Yuan H., Ouyang W., Li J., et al. (2022) Effects of fermentation temperature and time on the color attributes and tea pigments of Yunnan Congou black tea. Foods, 11(13), 1845. https://doi.org/10.3390/foods11131845

41. Hur S.J., Lee S.Y., Kim Y.C., Choi I., and Kim G.B., (2014) Effect of fermentation on the antioxidant activity in plant-based foods. Food Chem., 160, 346-356. https://doi.org/10.1016/j.foodchem.2014.03.112

42. Abudureheman B., Yu X., Fang D., and Zhang H. (2022) Enzymatic oxidation of tea catechins and its mechanism. Molecules, 27(3), 942.

https://doi.org/10.3390/molecules27030942

43. Liu L., Shi J., Yuan Y., and Yue T. (2022) Changes in the metabolite composition and enzyme activity of fermented tea during processing. Food Res. Int., 158, 111428. https://doi.org/10.1016/j.foodres.2022.111428

44. Siddiqui S.A., Ucak I., Jain S., Elsheikh W., Redha A.A., et al. (2024) Impact of drying on techno-functional and nutritional properties of food proteins and carbohydrates - A comprehensive review. Drying Technol., 42(4), 592-611.

https://doi.org/10.1080/07373937.2024.2303580

45. Adegoke B.M., Adebayo O.R., Shittu S.A., Adedeji T.O., Oladapo O.O., et al. (2023) The impact of traditional (natural) fermentation and roasting on the nutrients, antinutritional factors and phytochemical constituents of Glycine max (soybean) seed. Int. J. Res. Publ. Rev., 4(4), 856-863. https://doi.org/10.55248/gengpi.2023.4.4.33970

46. Long T.B., Muoi N.V., Truc T.T., Phong H.X., Linh N.H., et al. (2023) Influence of drying and roasting temperatures and humidity on the content of polyphenols and flavonoids, antioxidant activity, and quality of ginger tea. J. Chem. Technol., 31(4), 863-872. https://doi.org/10.15421/jchemtech.v31i4.286618

47. Juan I.M. (2001). Effects of different roasting temperature on flavor and quality of Oolong tea (Tong-Tin Type). Int. J. Tea Sci., 1(2-3), 4-16.

Downloads

Published

2025-04-09

How to Cite

Long, T. B., Muoi, N. V., Truc, T. T., Dai, D. N. T., Linh, N. H., & Quoc, L. P. T. (2025). Influence of processing on tannin, flavonoid, polyphenol content, and antioxidant activity of Ivy gourd (Coccinia grandis (L.) Voigt) leaf tea. Mongolian Journal of Chemistry, 26(53). https://doi.org/10.5564/mjc.v26i53.3774

Issue

Section

Articles