Numerical solution to the time-independent gross-Pitaevskii Equation

Authors

  • Tsogbayar Tsednee Institute of Physics and Technology, Mongolian Academy of Sciences, Ulaanbaatar, Mongolia
  • Banzragch Tsednee Institute of Physics and Technology, Mongolian Academy of Sciences, Ulaanbaatar, Mongolia
  • Tsookhuu Khinayat Institute of Physics and Technology, Mongolian Academy of Sciences, Ulaanbaatar, Mongolia

DOI:

https://doi.org/10.5564/jasea.v2i1.3493

Keywords:

Bose-Einstein condensate, nonlinear Schroedinger Equation, chemical potential, rubidium, lithium

Abstract

We solve the time-independent Gross-Pitaevskii equation modeling the Bose-Einstein condensate trapped in an anistropic harmonic potential using a pseudospectral method. Numerically obtained values for an energy and a chemical potential for the condensate with positive and negative scattering length have been compared with those from the literature. The results show that they are in good agreement when an atomic interaction is not too strong.

Downloads

Download data is not yet available.
Abstract
31
PDF
37

References

S.N. Bose, Planck's Law and Light Quantum Hypothesis, Z. Phys., 26 (2004), pp.178-181.

A. Einstein, Quantentheorie des einatomigen idealen Gases, Sitzber. Kgl. Preuss. Akad. Wiss. 1925 (1925), pp.3-14.

M.H. Anderson, J. R. Ensher, M.R. Matthews, C.E. Wieman, and E.A. Cornell, Observation of Bose-Einstein condensation in a dilute atomic vapor, Science 269, (1995), pp.198-201. https://doi.org/10.1126/science.269.5221.198

C.C. Bradley, C.A. Sackett, J.J. Tollett, and R.G. Hulet, Evidence of Bose-Einstein condensation in an atomic gas with attractive interactions, Phys. Rev. Lett. 75, (1995), pp.1687-1690. https://doi.org/10.1103/PhysRevLett.75.1687

K.B. Davis, M.-O. Mewes, M.R. Andrews, N.J. van Druten, D.S. Durfee, D.M. Kurn, and W. Ketterle, Bose-Einstein condensation in a gas of sodium atoms, Phys. Rev. Lett. 75, (1995), pp.3969-3973. https://doi.org/10.1103/PhysRevLett.75.3969

L.P. Pitaevskii, Vortex lines in the imperfect Bose-gas, Zh. Eksp. Teor. Fiz. 40, (1961), pp.646-649.

E.P. Gross, Structure of a quantized vortex in boson systems, Nuovo Cimento 20, (1961), pp.454-477. https://doi.org/10.1007/BF02731494

M. Edwards and K. Burnett, Numerical solution of the nonlinear Schroedinger equation for small samples of trapped neutral atoms, Phys. Rev. A 51, (1995), pp.1382-1386. https://doi.org/10.1103/PhysRevA.51.1382

P.A. Ruprecht, M.J. Holland, K. Burnett, and M. Edwards, Time-dependent solution of the nonlinear Schroedinger equation for Bose-condensed trapped neutral atoms, Phys. Rev. A 51, (1995), pp.4704-4711. https://doi.org/10.1103/PhysRevA.51.4704

F. Dalfovo and S. Stringari, Bosons in anisotropic traps: Ground state and vortices, Phys. Rev. A 53, (1996), pp.2477-2485. https://doi.org/10.1103/PhysRevA.53.2477

G. Baym and C. Pethick, Ground-State properties of magnetically trapped Bose-Condensed rubidium gas, Phys. Rev. Lett. 76, (1996), pp.6-9. https://doi.org/10.1103/PhysRevLett.76.6

Ts. Tsogbayar, M Horbatsch, Calculation of Stark resonance parameters for the hydrogen molecular ion in a static electric field, J. Phys. B 46, (2013), 085004 (8pp). https://doi.org/10.1088/0953-4075/46/8/085004

Downloads

Published

2021-12-01

How to Cite

[1]
T. Tsednee, B. Tsednee, and T. Khinayat, “Numerical solution to the time-independent gross-Pitaevskii Equation”, J. appl. sci. eng., A, vol. 2, no. 1, pp. 40–44, Dec. 2021.

Issue

Section

Articles