Numerical solution to the time-independent gross-Pitaevskii Equation
DOI:
https://doi.org/10.5564/jasea.v2i1.3493Keywords:
Bose-Einstein condensate, nonlinear Schroedinger Equation, chemical potential, rubidium, lithiumAbstract
We solve the time-independent Gross-Pitaevskii equation modeling the Bose-Einstein condensate trapped in an anistropic harmonic potential using a pseudospectral method. Numerically obtained values for an energy and a chemical potential for the condensate with positive and negative scattering length have been compared with those from the literature. The results show that they are in good agreement when an atomic interaction is not too strong.
Downloads
31
References
S.N. Bose, Planck's Law and Light Quantum Hypothesis, Z. Phys., 26 (2004), pp.178-181.
A. Einstein, Quantentheorie des einatomigen idealen Gases, Sitzber. Kgl. Preuss. Akad. Wiss. 1925 (1925), pp.3-14.
M.H. Anderson, J. R. Ensher, M.R. Matthews, C.E. Wieman, and E.A. Cornell, Observation of Bose-Einstein condensation in a dilute atomic vapor, Science 269, (1995), pp.198-201. https://doi.org/10.1126/science.269.5221.198
C.C. Bradley, C.A. Sackett, J.J. Tollett, and R.G. Hulet, Evidence of Bose-Einstein condensation in an atomic gas with attractive interactions, Phys. Rev. Lett. 75, (1995), pp.1687-1690. https://doi.org/10.1103/PhysRevLett.75.1687
K.B. Davis, M.-O. Mewes, M.R. Andrews, N.J. van Druten, D.S. Durfee, D.M. Kurn, and W. Ketterle, Bose-Einstein condensation in a gas of sodium atoms, Phys. Rev. Lett. 75, (1995), pp.3969-3973. https://doi.org/10.1103/PhysRevLett.75.3969
L.P. Pitaevskii, Vortex lines in the imperfect Bose-gas, Zh. Eksp. Teor. Fiz. 40, (1961), pp.646-649.
E.P. Gross, Structure of a quantized vortex in boson systems, Nuovo Cimento 20, (1961), pp.454-477. https://doi.org/10.1007/BF02731494
M. Edwards and K. Burnett, Numerical solution of the nonlinear Schroedinger equation for small samples of trapped neutral atoms, Phys. Rev. A 51, (1995), pp.1382-1386. https://doi.org/10.1103/PhysRevA.51.1382
P.A. Ruprecht, M.J. Holland, K. Burnett, and M. Edwards, Time-dependent solution of the nonlinear Schroedinger equation for Bose-condensed trapped neutral atoms, Phys. Rev. A 51, (1995), pp.4704-4711. https://doi.org/10.1103/PhysRevA.51.4704
F. Dalfovo and S. Stringari, Bosons in anisotropic traps: Ground state and vortices, Phys. Rev. A 53, (1996), pp.2477-2485. https://doi.org/10.1103/PhysRevA.53.2477
G. Baym and C. Pethick, Ground-State properties of magnetically trapped Bose-Condensed rubidium gas, Phys. Rev. Lett. 76, (1996), pp.6-9. https://doi.org/10.1103/PhysRevLett.76.6
Ts. Tsogbayar, M Horbatsch, Calculation of Stark resonance parameters for the hydrogen molecular ion in a static electric field, J. Phys. B 46, (2013), 085004 (8pp). https://doi.org/10.1088/0953-4075/46/8/085004
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Tsogbayar Tsednee, Banzragch Tsednee, Tsookhuu Khinayat
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright on any research article in the Journal of Applied Science and Engineering A is retained by the author(s).
The authors grant the Journal of Applied Science and Engineering A a license to publish the article and identify itself as the original publisher.
Articles in the Journal of Applied Science and Engineering A are Open Access articles published under a Creative Commons Attribution 4.0 International License CC BY.
This license permits use, distribution and reproduction in any medium, provided the original work is properly cited.