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ABSTRACT. We solve the time-independent Gross-Pitaevskii equation modeling the Bose-
Einstein condensate trapped in an anistropic harmonic potential using a pseudospectral method.
Numerically obtained values for an energy and a chemical potential for the condensate with
positive and negative scattering length have been compared with those from the literature. The
results show that they are in good agreement when an atomic interaction is not too strong.

1. INTRODUCTION

When the thermal de Broglie wavelength exceeds the mean spacing between identical boson-
particles, bosons are stimulated by presence of other bosons in the lowest energy state to oc-
cupy that state as well, resulting in macroscopic occupation of a single quantum state [1, 2].
This phenomenon is named the Bose-Einstein condensation and the condensate that forms con-
stitutes a macroscopic quantum mechanical object. This theoretical prediction had been con-
firmed experimentally 70 years later, particularly for 87Rb [3], 7Li [4] and 23Na [5]. The vapors
of alkali atoms employed in the experiments are very dilute, so one can expect that the two-body
collision accounting for by the knowledge of the s-wave scattering length might be dominate.
This also implies that the Gross-Pitaevskii theory [6, 7] for weakly interacting bosons can be
suitable for the system which can be simulated to be confined in an isotropic [8, 9] and an
anisotropic [10, 11] traps.

In this work we solve the time-independent Gross-Pitaevskii equation (GPE) for N alkali
atoms in an anisotropic trap. We compute the condensate wave function at T = 0 for bosons in-
teracting through positive and negative scattering lengths and obtain the chemical potential and
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energy as a function of N . Numerical method we choose to solve the GPE is a pseudospectral
method, which we had applied successfully in the past [12].

The paper is organized as follows. In Section 2, we show the formalism of the Gross-
Pitaevskii theory for the anisotropic trap. In Section 3 we give a brief discussion of a pseu-
dospectral approach for the 3D problem. In Section 4 we present the numerical results for the
two cases of positive 87Rb and negative 7Li scattering lengths. Then a conclusion follows.

2. GROSS-PITAEVSKII THEORY FOR TRAPPED BOSONS

The mean field theory for a dilute assembly of bosons at T = 0 results in an effective
nonlinear Schrödinger equation for the condensate’s wave function. This equation, the Gross-
Pitaevskii, nonlinear Schrödinger equation for condensed bosons has a form:

i�
∂Ψ(r, t)

∂t
=

(
− �2

2m
∇2 + Vext +

4π�2aN
m

|Ψ(r, t)|2
)
Ψ(r, t). (1)

Here Ψ(r, t) is the Bose-Einstein condensate (BEC) wave function, (also called the order pa-
rameter), m is the mass of boson, Vext is an external confining potential (trap), a is the s-wave
scattering length and N is the number of bosons in the condensate.

A stationary solution Ψ(r, t) = eiµt/�ψ(r) obeys
[
− �2

2m
∇2 + Vext(r) + Vmf (r)

]
ψ(r) = µψ(r), (2)

where the mean-field (mf) potential is Vmf = 4π�2aN
m |ψ(r)|2. Once this equation is solved the

chemical potential µ is known and the free energy can be calculated using

E = µ− 1

2
〈Vmf 〉 =

∫
ψ(r)∗

(
− �2

2m
∇2 + Vext(r) + 〈Vmf 〉

)
ψ(r)dr. (3)

Since ψ and Vmf in equation (2) depend on each other, the GP equation must be solved self-
consistently. One first uses an initial guess for the wave function ψ to calculate Vmf using
equation (4). This value is then employed in equation (2) to obtain a new ψ, which is then used
to calculate Vmf again. This process is repeated until self-consistency is reached.

In our calculation we use a following anisotropic harmonic oscillator potential:

Vext(x, y, z) =
m

2
ω2
xx

2 +
m

2
ω2
yy

2 +
m

2
ω2
zz

2. (4)

By introducing the standard lengths a⊥ = (�/mω⊥)
1/2 and az = (�/mωz)

1/2, we can
rescale the spatial coordinate, the energy, and the wave function as r = a⊥r1, E = �ω⊥E1 and

ψ(r) =
√
N/a3⊥ψ1(r1), with ωx = ωy = ω⊥. Here the wave function ψ1 is normalized to 1.

With help of the introduced asymmetry parameter λ = ωz/ω⊥ and the quantity g = 4πaN/a⊥,
the time-independent GP equation (2) can be written as:

[
− 1

2
∇2

1 +
(x21 + y21)

2
+

λ2z21
2

+ g|ψ(r1)|2
]
ψ(r1) = µψ(r1), (5)
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3. NUMERICAL PRODECURE

In our calculation we use the Legendre-pseudospectral method [12]. In terms of this ap-
proach, function ψ(r) can be expressed as:

ψ(r) ≈ ψNr(r) =

Nr∑
i=0

ψ(ri)gi[x(r)], (6)

where gi[x(r)] is a cardinal function given with

gi[x(r)] = − 1

Nr(Nr + 1)PNr(xi)

(1− x2)P
′
Nr

(x)

x− xi
(7)

and gi(xj) = δij . Here Nr is a number of grid point along r(x) = a+ (1 + x)(b− a)/2, x ∈
[−1, 1] and r ∈ [a, b] with a length parameters (a, b). Here the Legendre-Gauss-Lobatto grid
pints xi are determined as the roots of the first derivative of the Legendre polynomial PN (x)
with respect to x, P ′

Nr
(xi) = 0, i = 0, . . . , Nr. In the approach, the Laplace operator ∇2

can be approximated with a differentiation matrix dij [12]. So, for the 3D calculation, we can
approximate ∇2

x+∇2
y+∇2

z ≈ Izz⊗ (d2xx⊗Iyy)+Izz⊗ (Ixx⊗d2yy)+(Ixx⊗Iyy)⊗d2zz . Here
I is the unit matrix, and ⊗ expresses the Kroneckor (tensor) product [12]. In our numerical
calculation we use ax = ay = az = a = −5, bx = by = bz = b = 5 in units of a⊥, and
Nx = Ny = Nz = 32.

4. RESULTS AND DISCUSSION

As an example of atoms with repulsive interaction, we choose 87Rb, as in the experiment of
Ref. [3]. In our calculation, all values of the physical parameters are taken from Ref. [10]: the
s-wave triplet-spin scattering length, as = 100a0 where a0 is the Bohr radius; the asymmetry
parameter of the experimental trap is λ = ωz/ω⊥ =

√
8; the axial frequency ωz/2π = 220Hz;

the corresponding characteristic length is a⊥ = 1.222 × 10−12 cm and the ratio between the
scattering and the oscillator lengths is a/a⊥ = 4.33× 10−3. In our calculation number of grid
points is Nx = Ny = Nz = 24, and results are independent on this number. Table 1 shows
the excess chemical potential and energy per particle for three values of N = 100, 1000 and
1000, and our calculated values are close to those in Ref. [10], which had been obtained with a
direct minimization approach combined with an imaginary time technique. Both quantities are
expressed in units of �ω⊥. In Figure 1 we show plots of the wave function along the x (panel

TABLE 1. Results for the ground state of 87Rb atoms in a trap with λ =
√
8.

Chemical potential and energy are in unit of �ω⊥. A number of grid point is
Nx = Ny = Nz = 24.

N = 100 N = 1000 N = 5000
µ E µ E µ E

This work 2.88 2.67 4.77 3.84 8.15 6.13
[10] 2.88 2.66 4.77 3.84 8.14 6.12
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a) and the z axis (panel b) for four values of N . When N increases the repulsion among the
atoms tends to lower the central density, and expands the cloud of the atoms towards region
where the trapping potential is higher. This results in increase of an energy per particle.
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FIGURE 1. The ground-state wave function for 87Rb along the x axis (a) and
along the z-axis (b). Distances are in units of a⊥. Blue, green, red and black
lines corresponds to N = 100, 500, 2000 and 5000, in descending order of
central density. Cross are taken from Ref. [10].

As an example of atoms with an attractive interaction we choose 7Li, as in the experiment of
Ref. [4]. In the calculation, we use as = −27 a0; ωz = 2π × 117Hz; a⊥ = 2.972× 10−4 cm;
|a|/a⊥ = 0.48× 10−3; ω⊥ = 2π× 163Hz, and λ = ωz/ω⊥ = 0.72. Table 2 shows numerical
values of chemical potential and energy for the 7Li ground state in unit of �ω⊥ for three values
of N . Figure 2a presents the ground state wave function for the 7Li atom for three values of

TABLE 2. Same results as shown in Table 1, but for 7Li atoms in a trap with
λ = 0.72.

N = 100 N = 500 N = 1000

µ E µ E µ E

This work 1.33 1.34 1.17 1.27 0.86 1.16

N . In this plot, the central density of cloud increases rapidly with N since more attractive
potential energy is added. Fig. 2b shows two-dimensional decsription of ground state wave
function ψ(x, y, 0) for N = 1000.

5. CONCLUSION

In this paper we have solved the time-independent Gross-Pitaevskii equation, non-linear
eigenvalue problem, for a dilute gas of alkali atoms in an anisotropic traps using the pseu-
dospectral method. The ground state wave function for the condensate with repulsive (87Rb)
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FIGURE 2. Same plots as shown in Figure 1, but for the 7Li ground state along
the x axis (a), and blue, red and black lines correspond to N = 100, 500 and
1000, in ascending order of central density (a). Panel (b) shows an interpolated
two-dimensional plot for N = 1000. Crosses are taken from Ref. [10].

and attractive (7Li) behaviors at T = 0 has been obtained and natures of these wave function
depending on number of particle have been discussed. Chemical potential and energy per par-
ticle for the (87Rb) and (7Li) condensates for different values of N have been presented as
well.
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