Numerical solution to the time-dependent Gross-Pitaevskii equation


  • Tsogbayar Tsednee The Institute of Physics and Technology, Mongolian Academy of Sciences, Ulaanbaatar, Mongolia
  • Banzragch Tsednee The Institute of Physics and Technology, Mongolian Academy of Sciences, Ulaanbaatar, Mongolia
  • Tsookhuu Khinayat The Institute of Physics and Technology, Mongolian Academy of Sciences, Ulaanbaatar, Mongolia



Bose-Einstein condensate, split-step, Crank-Nicolson, pseudospectral, harmonic potential


In this work we employ the split-step technique combined with a Legendre pseudospectral representation to solve various time-dependent GrossPitaevskii equations (GPE). Our findings based on the numerical accuracy of this approach applied for one-dimensional (1D) and two-dimensional (2D) problems show that it can provide accurate and stable solutions. Moreover, this approach has been applied to study the dynamics of the Bose-Einstein condensate which is modeled with the GPE. The breathing of condensate with a repulsive and attractive interactions trapped in 1D and 2D harmonic potentials has been simulated as well.

PDF 35


L.P. Pitaevskii, Vortex lines in the imperfect Bose-gas, Zh. Eksp. Teor. Fiz. 40, (1961), pp. 646-649.

E.P. Gross, Structure of a quantized vortex in boson systems, Nuovo Cimento 20, (1961), pp. 454-477,

S.N. Bose, Planck’s Law and Light Quantum Hypothesis, Z. Phys, 26 (1924), pp. 178-181.

A. Einstein, Quantentheorie des einatomigen idealen Gases, Sitzber. Kgl. Preuss. Akad. Wiss. 1925 (1925), pp. 3-14.

M.H. Anderson, J. R. Ensher, M.R. Matthews, C.E. Wieman, and E.A. Cornell, Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor, Science 269, (1995), pp. 198-201,

C.C. Bradley, C.A. Sackett, J.J. Tollett, and R.G. Hulet, Evidence of Bose-Einstein Condensation in an Atomic Gas with Attractive Interactions, Phys. Rev. Lett. 75, (1995), pp. 1687-1690,

K.B. Davis, M.-O. Mewes, M.R. Andrews, N.J. van Druten, D.S. Durfee, D.M. Kurn, and W. Ketterle, Bose-Einstein Condensation in a Gas of Sodium Atoms, Phys. Rev. Lett. 75, (1995), pp. 3969-3973.

J. A. C. Weideman and V. M. Herbst, Split-step methods for the solution of the nonlinear Schrödinger equation, SIAM, J. Numer. Anal. 23 (3), (1986), pp. 485-507.

P. Muruganandam and S. K. Adhikari, Bose-Einstein condensation dynamics in three dimensions by the pseudospectral and finite-difference methods, J.Phys.B 36, (2003), pp. 2501–2513.

W. Bao, D. Jaksch, and P. A. Markowich, Numerical solution of the Gross-Pitaevskii equation for Bose-Einstein condensation, J. Comp. Phys. 187, (2003), pp. 318-342.

H. Wang, Numerical studies on the split-step finite difference method for nonlinear Schrodinger equations, App. Math. Comp. 170, (2005), pp. 17-35.

H. Wang, X. Ma, J. Lu, and W. Gao, An efficient time-splitting compact finite difference method for Gross-Pitaevskii equation, App. Math. Comp. 297, (2016), pp. 131-144.

13. A.D. Bandrauk, H. Shen, Exponential split operator methods for solving coupled time-dependent Schrodinger equations, J. Chem. Phys. 99 (2) (1993), pp. 1185-1193.

14. Ts. Tsogbayar, M. Horbatsch, Calculation of Stark resonance parameters for the hydrogen molecular ion in a static electric field, J. Phys. B 46, (2013), 085004.

15. Ts. Tsogbayar, Ts. Banzragch, and Kh. Tsookhuu, Numerical solution to the time-independent Gross-Pitaevskii equation, J. App. Sc. Eng. A 2 (1), (2021), pp. 71-75.

Ts. Tsogbayar, D. L. Yeager, A numerical Hartree self-consistent field calculation of an autoionization resonance parameters for a doubly excited 2s 2 , 3s 2 , and 4s 2 states of He atom with a complex absorbing potential Chin. Phys. B 26 (8) (2017) 083101.

C. M. Dion and E. Cances, Spectral method for the time-dependent Gross-Pitaevskii equation with a harmonic trap, Phys. Rev. E 67, (2003), 046706.

P.A. Ruprecht, M.J. Holland, K. Burnett, and M. Edwards, Time-dependent solution of the nonlinear Schrodinger equation for Bose-condensed trapped neutral atoms, Phys. Rev. A 51, (1995), pp. 4704-4711.




How to Cite

T. Tsednee, B. Tsednee, and T. Khinayat, “Numerical solution to the time-dependent Gross-Pitaevskii equation”, J. appl. sci. eng., A, vol. 3, no. 1, pp. 17–26, Dec. 2022.