Numerical solution to the time-dependent Gross-Pitaevskii equation

Authors

  • Tsogbayar Tsednee The Institute of Physics and Technology, Mongolian Academy of Sciences, Ulaanbaatar, Mongolia
  • Banzragch Tsednee The Institute of Physics and Technology, Mongolian Academy of Sciences, Ulaanbaatar, Mongolia
  • Tsookhuu Khinayat The Institute of Physics and Technology, Mongolian Academy of Sciences, Ulaanbaatar, Mongolia

DOI:

https://doi.org/10.5564/jasea.v3i1.2456

Keywords:

Bose-Einstein condensate, split-step, Crank-Nicolson, pseudospectral, harmonic potential

Abstract

In this work we employ the split-step technique combined with a Legendre pseudospectral representation to solve various time-dependent GrossPitaevskii equations (GPE). Our findings based on the numerical accuracy of this approach applied for one-dimensional (1D) and two-dimensional (2D) problems show that it can provide accurate and stable solutions. Moreover, this approach has been applied to study the dynamics of the Bose-Einstein condensate which is modeled with the GPE. The breathing of condensate with a repulsive and attractive interactions trapped in 1D and 2D harmonic potentials has been simulated as well.

Downloads

Download data is not yet available.
Abstract
206
PDF
234

References

L.P. Pitaevskii, Vortex lines in the imperfect Bose-gas, Zh. Eksp. Teor. Fiz. 40, (1961), pp. 646-649.

E.P. Gross, Structure of a quantized vortex in boson systems, Nuovo Cimento 20, (1961), pp. 454-477, https://doi.org/10.1007/BF02731494

S.N. Bose, Planck’s Law and Light Quantum Hypothesis, Z. Phys, 26 (1924), pp. 178-181. https://doi.org/10.1007/BF01327326

A. Einstein, Quantentheorie des einatomigen idealen Gases, Sitzber. Kgl. Preuss. Akad. Wiss. 1925 (1925), pp. 3-14.

M.H. Anderson, J. R. Ensher, M.R. Matthews, C.E. Wieman, and E.A. Cornell, Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor, Science 269, (1995), pp. 198-201, https://doi.org/10.1126/science.269.5221.198

C.C. Bradley, C.A. Sackett, J.J. Tollett, and R.G. Hulet, Evidence of Bose-Einstein Condensation in an Atomic Gas with Attractive Interactions, Phys. Rev. Lett. 75, (1995), pp. 1687-1690, https://doi.org/10.1103/PhysRevLett.75.1687

K.B. Davis, M.-O. Mewes, M.R. Andrews, N.J. van Druten, D.S. Durfee, D.M. Kurn, and W. Ketterle, Bose-Einstein Condensation in a Gas of Sodium Atoms, Phys. Rev. Lett. 75, (1995), pp. 3969-3973. https://doi.org/10.1103/PhysRevLett.75.3969

J. A. C. Weideman and V. M. Herbst, Split-step methods for the solution of the nonlinear Schrödinger equation, SIAM, J. Numer. Anal. 23 (3), (1986), pp. 485-507. https://doi.org/10.1137/0723033

P. Muruganandam and S. K. Adhikari, Bose-Einstein condensation dynamics in three dimensions by the pseudospectral and finite-difference methods, J.Phys.B 36, (2003), pp. 2501–2513. https://doi.org/10.1088/0953-4075/36/12/3101

W. Bao, D. Jaksch, and P. A. Markowich, Numerical solution of the Gross-Pitaevskii equation for Bose-Einstein condensation, J. Comp. Phys. 187, (2003), pp. 318-342. https://doi.org/10.1016/S0021-9991(03)00102-5

H. Wang, Numerical studies on the split-step finite difference method for nonlinear Schrodinger equations, App. Math. Comp. 170, (2005), pp. 17-35. https://doi.org/10.1016/j.amc.2004.10.066

H. Wang, X. Ma, J. Lu, and W. Gao, An efficient time-splitting compact finite difference method for Gross-Pitaevskii equation, App. Math. Comp. 297, (2016), pp. 131-144. https://doi.org/10.1016/j.amc.2016.10.037

A.D. Bandrauk, H. Shen, Exponential split operator methods for solving coupled time-dependent Schrodinger equations, J. Chem. Phys. 99 (2) (1993), pp. 1185-1193. https://doi.org/10.1063/1.465362

Ts. Tsogbayar, M. Horbatsch, Calculation of Stark resonance parameters for the hydrogen molecular ion in a static electric field, J. Phys. B 46, (2013), 085004. https://doi.org/10.1088/0953-4075/46/8/085004

Ts. Tsogbayar, Ts. Banzragch, and Kh. Tsookhuu, Numerical solution to the time-independent Gross-Pitaevskii equation, J. App. Sc. Eng. A 2 (1), (2021), pp. 71-75.

Ts. Tsogbayar, D. L. Yeager, A numerical Hartree self-consistent field calculation of an autoionization resonance parameters for a doubly excited 2s 2 , 3s 2 , and 4s 2 states of He atom with a complex absorbing potential Chin. Phys. B 26 (8) (2017) 083101. https://doi.org/10.1088/1674-1056/26/8/083101

C. M. Dion and E. Cances, Spectral method for the time-dependent Gross-Pitaevskii equation with a harmonic trap, Phys. Rev. E 67, (2003), 046706. https://doi.org/10.1103/PhysRevE.67.046706

P.A. Ruprecht, M.J. Holland, K. Burnett, and M. Edwards, Time-dependent solution of the nonlinear Schrodinger equation for Bose-condensed trapped neutral atoms, Phys. Rev. A 51, (1995), pp. 4704-4711. https://doi.org/10.1103/PhysRevA.51.470

Downloads

Published

2022-12-31

How to Cite

[1]
T. Tsednee, B. Tsednee, and T. Khinayat, “Numerical solution to the time-dependent Gross-Pitaevskii equation”, J. appl. sci. eng., A, vol. 3, no. 1, pp. 17–26, Dec. 2022.

Issue

Section

Articles