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Abstract. In this work we employ the split-step technique combined with a 

Legendre pseudospectral representation to solve various time-dependent Gross-

Pitaevskii equations (GPE). Our findings based on the numerical accuracy of this 

approach applied for one-dimensional (1D) and two-dimensional (2D) problems 

show that it can provide accurate and stable solutions. Moreover, this approach 

has been applied to study the dynamics of the Bose-Einstein condensate which is 

modeled with the GPE. The breathing of condensate with a repulsive and 

attractive interactions trapped in 1D and 2D harmonic potentials has been 

simulated as well. 
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1 Introduction  

Gross-Pitaevskii theory [1, 2] is one of the successful mathematical models describing 

the Bose-Einstein condensate (BEC) in which the bosons simultaneously occupy the 

same quantum state of the lowest energy. The BEC was theoretically predicted by Bose 

and Einstein [3, 4] in 1925, however, it had first been experimentally obtained in 1995 

[5–7]. Various methods have been tested to obtain numerical solution for the time-

dependent Gross-Pitaevskii equation (GPE). Weideman [8] employed a split-step 

Fourier pseudospectral method. Adhikari [9] used a split-step Crank-Nicolson approach 

for solving the GPE. Moreover, Bao [10] and Wang [11, 12] have made a lot of 

contributions for developing numerical techniques for solving a single and coupled 

GPEs with different trapping potentials. In this work our goal is to solve the time-

dependent GPE using the split-step technique combined with a Legendre 

pseudospectral representation. To our knowledge, the split-step Legendre 

pseudospectral approach has not been applied to this problem in a systematic and 

detailed way, yet. In our calculation, we will initially test a numerical accuracy of the 
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proposed approach for a nonlinear one-dimensional (1D) and two-dimensional (2D)

Schrödinger equation for which an analytical solution is known. Then we will apply the

approach for solving the time-dependent GPE which simulates the dynamics of the BEC

with a repulsive and an attractive interactions trapped in 1D and 2D harmonic potentials

at zero temperature. The paper is organized as follows. In Section 2, we present the

formalism of the Gross-Pitaevskii theory for the harmonic trap. In Section 3 we give a

brief discussion of a split-step technique and a pseudospectral method for the 1D and

2D problems. In Section 4 we present the numerical results and discussions for test

problems and the dynamics of condensate trapped in 1D and 2D harmonic potentials.

Then a conclusion follows.

2 Gross-Pitaevskii theory for trapped bosons

The dynamics of boson particles confined in the trap (potential) can be modeled with

the following time-dependent Gross-Pitaevskii equation [1, 2, 10–12]:
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Here ψ(r, t) is the BEC wave function, m is the mass of boson, V is an external

confining potential (trap), as is the s-wave scattering length and N is the number of

bosons in the condensate defined as N ≡ 〈ψ(r, t)|ψ(r, t)〉, and the energy per particle

is defined as
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∫
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Usually the external trap potential V is the harmonic trapping potential
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2 In the trapping potential ωx, ωy and ωz are the frequencies along the x-, y- and

z-directions, respectively.

It is convenient to use the Eq.(1) in the dimensionless form in the calculation.

By choosing the t̃ = ωxt and ax = (�/mωx)
1/2 as the dimensionless time and

length units, respectively, we can have the rescaled quantities: r̃ = r/ax, ψ̃(r̃, t̃) =

a
3/2
x /N1/2ψ(r, t), and Ẽ = E/�ωx. After removing all ,̃ the time-dependent GPE

Eq.(1) can be written in the dimensionless form [10–12]:

i
∂ψ(r, t)

∂t
=

[
− 1

2
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r + V + g|ψ(r, t)|2
]
ψ(r, t), (3)

where the nonlinear constant g = 4πasN/ax. In this work we use the 1D and 2D

harmonic trapping potentials given in the Cartesian coordinates. In 1D, r = (x), and

the trapping potential V in Eq.(3) is V (x) = x2

2 . For the 2D case, r = (x, y) and

V (x, y) = x2

2 + λ2y2

2 , with λ =
ωy

ωx
.

We note that the Eq.(3) has no analytic solution, however, it can be solved employing

the numerical techniques which I will discuss in the next section.
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3 Numerical procedure

In this work we consider the initial-boundary value problem for the GPE given in Eq.(3).

We can write it in the form:

i
∂ψ(r, t)

∂t
= Hψ(r, t) (4)

with an initial condition ψ(r, 0) = ψ0(r), r ∈ R
d (d = 1, 2, 3), and a boundary

condition lim
|r|→±∞

ψ(r, t) = 0, t ≥ 0. Here d means a dimension of space. A formal

solution for this equation can be written as

ψ(r, t+Δt) = e−iHΔtψ(r, t). (5)

In our numerical calculation we solve the Eq.(4) for two cases: (i) without a split-step

technique and (ii) with a split-step technique. In both cases when we solve the Eq.(4),

we employ the Crank-Nicolson (CN) scheme in time which is unconditionally stable

and the Legendre-pseudospectral method in space part of the Hamiltonian H .

For the first case in which a split-step technique is not used a solution for Eq.(4) is

indeed given in the form (5), and can be found with the CN scheme:

ψn+1 =
(
1 +

iΔt

2
H
)−1(

1− iΔt

2
H
)
ψn, (6)

where ψn = ψ(r, tn) and Δt > 0 is a time step size with which a time step is given as

tn = nΔt, n = 0, 1, . . .
Now let’s consider the second case in which the split-step technique is employed.

The main idea of this approach is that we divide the Hamiltonian operator H into two

parts: a linear part A = − 1
2∇2

r and a non-linear part B = V + g|ψ(r, t)|2. Then we

solve the Eq.(4) in terms of two successive steps. In the Step 1, we solve the following

a nonlinear operator equation

i
∂ψ(r, t)

∂t
= Bψ(r, t) (7)

for the time step Δt; then Step 2, followed by solving

i
∂ψ(r, t)

∂t
= Aψ(r, t) (8)

for the same time step.

From the nonlinear subproblem (7) in the Step 1, for tn ≤ t ≤ tn+1 we can have an

exact solution in the form

ψ(r, t) = e−iBΔtψ(r, tn) = e−i(V (r)+g|ψ(r,tn)|2)Δtψ(r, tn). (9)

In Step 2, we obtain a numerical solution in the following form:

ψn+1 =
(
1 +

iΔt

2
A
)−1(

1− iΔt

2
A
)
ψn, (10)
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which is an exactly same approach as given in (6). Then the solution (5) for the equation

can be found in the form:

ψ(r, t+Δt) = e−iAΔte−iBΔtψ(r, t). (11)

We note that this splitting technique has only first-order in time (Eq.(11)), so that it can

easily be implemented. Note that one may use higher-order splitting approaches [11–13]

to solve the GPE as well.

For numerical calculation of ∇2
r in H and A operators, we used the Legendre

differentiation matrix of the second order (d2ij) (details can be found in [14,15]). For 1D

case, ∇2
xx ≈ d2xx. For 2D case, d2xx ⊗ Iyy + Ixx ⊗ d2yy , where I is the unit matrix and

⊗ denotes the Kronecker product [14, 15]. We note that this Legendre pseudospectral

approach had been employed to obtain a solution for the time-independent GPE for an

anisotropic 3D trapping potential in our previous work [15].

Below we have shown the solutions (6) and (11) in the discrete forms which can

directly be implemented in coding. For the 1D GPE, the solution (6) can be written as

ψn+1
i =

[
I +

iΔt

2

(
− 1

2
d2xx + diag[Vi] + g diag[|ψn

i |2]
)]−1

(12)

×
[
I − iΔt

2

(
− 1

2
d2xx + diag[Vi] + g diag[|ψn

i |2]
)]

ψn
i .

The solution (11) can be obtained as

ψn+1
i =

[
I − iΔt

4
d2xx

]−1[
I +

iΔt

4
d2xx

]
exp[−Δt(Vi + g |ψn

i |2)]ψn
i . (13)

In both (12) and (13) equations, we use the notations: ψn
i ≡ ψ(xi, tn), I is unit matrix,

“diag” means a diagonal matrix, and xi are non-uniformly distributed Nx + 1 number

of the Legendre-Gauss-Lobatto grid points in an interval [a, b]. Note that in numerical

calculation we need to take into account the boundary condition in such a way that two

end points of a column vector will not be used for the Dirichlet boundary condition, and

for the 2D case in discretized form a main difference comes with the Kronecker product

as mentioned above [15].

4 Results and discussion

4.1 Numerical tests

In our numerical experiments we initially test the numerical accuracy of two approaches:

(i) the ordinary Legendre-pseudospectral (LS) and (ii) the split-step Legendre-pseudospectral

(SSLS) methods through the following two examples.

Example 1. First we consider the following GPE in 1D [11]

iψt = −ψxx − 2|ψ|2ψ (14)

with the homogeneous Dirichlet condition over [−20, 20]. The analytical solution for

this equation is ψexact(x, t) = sech(x − 4t)ei(2x−3t). This is the usual non-linear
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Schrödinger equation since it does not include the trapping potential V (GPE (1)).

We computed the maximum error between the exact solution and the approximated

solution which are obtained from the LS and the SSLS methods. Table 1 shows the

maximum of |ψexact(x, t) − ψapprox(x, t)| until t = 4. A number of grid points along

x-axis is Nx = 128 and the time step size Δt = 0.01. We note that this problem

was also considered using the split-step finite-difference (SSFD) and split-step Fourier

spectral (SSFS) methods in Ref. [11], and at t = 4 with Δt = 0.01 value of this error

obtained by the SSFD approach is 3.6620 · 10−2, while the SSFS method’s estimation

for it is 3.663 · 10−2 (Table 1 in [11]). In Ref. [11] the spatial mesh size Δx = 0.01 =
(b−a)/M, a = −20, b = 20, where M is number of grid points. Then a number of grid

point used in [11] is M = 4000. This is quite large number compared with the number

we used (Nx = 128), indeed. We say that a reason why our calculation with relatively

few number of grid points works well is that the Legendre-Gauss-Lobatto grid points

are distributed non-uniformly in the interval, that is, more points come near two ends of

the interval [16].

Table 1. The maximum error between the exact solution and approximated solution at different

time t in Example 1. Nx = 128 and Δt = 0.01.

t LS (Eq. (6)) SSLS (Eq. (11))

0.5 1.1e-2 4.7e-3
1 2.4e-2 6.6e-3
2 5.7e-2 1.1e-2
3 1.1e-1 1.5e-2
4 1.8e-1 3.6e-2

Example 2. We consider the following GPE in 2D [11]

iψt = −1

2
(ψxx + ψyy) + V (x, y)ψ + |ψ|2ψ, (x, y) ∈ [0, 2π]× [0, 2π], (15)

where V (x, y) = 1 − sin2 x sin2 y. An initial condition ψ0(x, y) = sinx sin y are

used. The exact solution for this problem with the Dirichlet boundary condition is

ψexact(x, y, t) = sinx sin ye−i2t. Table 2 presents the maximum of |ψexact(x, y, t) −
ψapprox(x, y, t)| until time t = 30 using the LS and SSLS methods. The number of grid

points along the x- and y-axis is Nx = Ny = 16 and the time step size Δt = 0.01.

This example problem was also discussed in Ref. [11] where an author used the SSFD

and SSFS methods. The maximum errors from the SSFD and SSFS methods with

Nx = Ny = 128 at t = 20 with Δt = 0.01 are 4.057 · 10−3 and 1.138 · 10−10,

respectively [11]. From the errors estimated, we see that the SSFS approach has shown

an extremely good result since its solution can be obtained with an almost analytical

expression in terms of the ordinary Fourier pseudospectral representation.

From Tables 1 and 2, we have seen that results (3rd column in each table) from the

SSLS method are more accurate than those (2nd column in each table) from the ordinary

LS approach. We assume that a reason for this can be related to a fact that the SSLS

approach uses the exact approximation in an intermediate step (Step 1). Thus, we will
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Table 2. The maximum error between the exact solution and approximated solution at different

time t in Example 2. Nx = Ny = 16 and Δt = 0.01.

t LS (Eq. (6)) SSLS (Eq. (11))

1 6.6e-5 8.2e-6
5 3.3e-4 4.1e-5
10 6.6e-4 8.2e-5
20 1.3e-3 1.6e-4
30 2.0e-3 2.5e-4

employ the split-step technique in the succeeding numerical calculations. Moreover,

we want to note that our LS and SSLS approaches can be considered as applicable ones

even for small number of grid points compared to other approaches, such as the SSFS,

used in [11]. We also note that more accurate results from the LS and SSLS approaches,

especially for large computational domains of time and space can be easily obtained by

handling the computational parameters, such as, increasing number of grid points.

4.2 Numerical applications

In this subsection based on numerical experiences obtained in a preceding subsection

we will solve the GPE (3) of which an analytical solution is unknown. We will apply

the split-step technique for the following examples which have a trap potential.

Example 3. We solve the GPE (3) in 1D

iψt = −1

2
ψxx +

x2

2
+ g|ψ|2ψ (16)

with an initial condition ψ0(x) = π−1/4e−x2/2, which is a ground state for the trap

with g = 0. When g > 0, the interaction between particles is repulsive. In contrast,

when g < 0, the interaction is attractive. We solve this problem on [−10, 10] with a

Dirichlet boundary condition.

In Fig.1a we have shown the time-evolution of the condensate |ψ(x, t)|2 for a

repulsive interaction (g = 5). The dynamics of a ground state (an initial state) that

is left to evolve with a different trapping potential is called a “breathing” [17, 18].

The “breathing” of the condensate shown in panel 1a may happen because the initial

trapping frequency is reduced, resulting in expansion of the trapping potential [17].

Panel 1b of Fig.1 presents how the nonlinear constant g affects the breathing frequency

of the condensate. It’s been clearly shown that the density at the center of the trap is

lower for a larger value of g, which is expected because of the corresponding higher

inter-particle repulsion.

Fig.2a presents the dynamics of the condensate for which an inter-particle interaction

is attractive (g = −2.5). Because of this attractive behavior, density at the center of the

trap |ψ(0, t)|2 is higher for a smaller value of g (Panel 2b). We also observe that the

oscillation frequency of the condensate in the trap increases with a smaller value of g
since more attractive potential energy is added.

In the above two calculations, we chose the number of grid points along x-axis

Nx = 128 and the time step size Δt = 0.001. For the calculations the initial condition
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Figure 1. (a) “Breathing” of the condensate for the repulsive interaction with g = 5. (b) The

value of the wave function |ψ(0, t)|2 in the center of the trap is given as a function of time t.
Blue, green and red curves correspond to values of the nonlinear constant g = 1, 5 and 10,

respectively. Computational parameters: Nx = 128, Δt = 0.001.

(a)

0 2 4 6 8 10 12
t

0.6

0.8

1

1.2

1.4

1.6

1.8

|
(0

,t)
|2

(b)

Figure 2. Same plots as shown in Figure 1, but for g < 0: (a) the nonlinear constant g = −2.5.

(b) Blue, green and red curves correspond to g = −1, −2.5 and −10, respectively.

ψ0(x) is used, therefore all curves shown in panels 1b and 2b have the same starting

point. We note that all calculations are independent on the numerical parameters, since

a calculated discrete error norm ||ψNx=128(t)− ψNx=64(t)||l2 at time t = 12 is 10−6.

Example 4. We solve the GPE (3) in anisotropic 2D trap

iψt = −1

2
(ψxx + ψyy) +

x2

2
+

λ2y2

2
+ g|ψ|2ψ. (17)

The initial condition for this problem ψ0(x, y) is taken as the ground state for an

isotropic trap (λ2 = 1). Then we let this initial state ψ0 evolve in an anisotropic

trap with λ2 = 4. We solve this problem on [−10, 10]2 and a number of grid points

Nx = Ny = 86.

Fig.3a shows the density |ψ(x, y, t)|2 for the anisotropic trap with λ = 2 and g = 5.

Panel 3b demonstrates the breathing frequency of this condensate depending on values

of the nonlinear constant g. When g increases, the initial density |ψ(x, y, 0)|2 at time
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Figure 3. Surface plot of density |ψ(x, y, t)|2 at time t = 2.5 and g = 5. (b) “Breathing” of the

condensate after the isotropic trap becomes the anisotropic trap. The value of |ψ(x, y, 0)|2 in the

center of the trap is given as a function of time t for g equal to 1 (blue curve), 5 (green curve) and

10 (red curve). Numerical parameters: Nx = Ny = 86 and Δt = 0.01.
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Figure 4. Same plots as shown in Figure 3, but for a condensate with an attractive interaction.

(a) Surface plot of |ψ(x, y, t)|2 at time t = 2.5 and g = −2. Panel (b) shows |ψ(0, 0, t)|2 for

g = −1 (blue), −2 (green) and −3 (red).

t = 0 lowers due to a repulsive interparticle interaction. However, it has been seen that

the nature of all three curves is different from what has been appeared in Fig.2b. This

may happen because the trap is contracted along the y-axis and particles could move

higher and closer.

Fig.4 shows results for the system composed of the particle with a negative scattering

length (as < 0) which makes the system attractive (g < 0). Panel 4a presents the density

|ψ(x, y, t)|2 for the anisotropic trap g = −2. As expected, similar patterns appear

in Fig.4b like what was seen in Fig.2b since the anisotropic trap may support more

particles in the center of the trap. We note that when an interaction becomes stronger

(as g gets larger/smaller value), uneven (up and down) nature appears (red curve in

panels 3b and 4b). We also note that results for our 2D harmonic trap calculations are

stable for the grid size parameters and the time interval we employed.
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5 Conclusion

In this paper we have solved the time-dependent Gross-Pitaevskii equation using split-step

technique combined with the Legendre-pseudospectral method. From our numerical

experiment for a non-linear Schrödinger equation it’s been shown that the split-step

procedure is more accurate than an ordinary pseudospectral method. It has also been

shown that the split-step Legendre-pseudospectral approach can be competitive one

against the split-step Fourier pseudospectral approach due to the it’s non-uniform grid

point distribution along with the requirement of relatively few grid points. Furthermore,

the SSLS approach has been tested for the one-dimensional and two-dimensional time-

dependent GPE with harmonic trap to simulate the dynamics of the Bose-Einstein

condensate with repulsive and attractive interactions. Making the expansion of the 1D

harmonic trapping potential, the breathing modes of the condensate have been revealed

as a function of the time for various values of the nonlinear constant of the condensate.

Moreover, the simulation of those modes has been discussed for 2D harmonic trap

which contracts from a looser one to a more confining trap.

Authors’ contributions

Ts. Ts. formulated theoretical work, and Ts. Ts. and B. Ts. carried out numerical

calculations. All authors analyzed results and Ts. Ts. wrote the manuscript.

References

1. L.P. Pitaevskii, Vortex lines in the imperfect Bose-gas, Zh. Eksp. Teor. Fiz. 40, (1961), pp.

646-649.

2. E.P. Gross, Structure of a quantized vortex in boson systems, Nuovo Cimento 20, (1961), pp.

454-477, https://doi.org/10.1007/BF02731494

3. S.N. Bose, Planck’s Law and Light Quantum Hypothesis, Z. Phys, 26 (1924), pp. 178-181.

https://doi.org/10.1007/BF01327326

4. A. Einstein, Quantentheorie des einatomigen idealen Gases, Sitzber. Kgl. Preuss. Akad.

Wiss. 1925 (1925), pp. 3-14.

5. M.H. Anderson, J. R. Ensher, M.R. Matthews, C.E. Wieman, and E.A. Cornell, Observation

of Bose-Einstein Condensation in a Dilute Atomic Vapor, Science 269, (1995), pp. 198-201,

https://doi.org/10.1126/science.269.5221.198

6. C.C. Bradley, C.A. Sackett, J.J. Tollett, and R.G. Hulet, Evidence of Bose-Einstein

Condensation in an Atomic Gas with Attractive Interactions, Phys. Rev. Lett. 75, (1995),

pp. 1687-1690, https://doi.org/10.1103/PhysRevLett.75.1687

7. K.B. Davis, M.-O. Mewes, M.R. Andrews, N.J. van Druten, D.S. Durfee, D.M. Kurn, and

W. Ketterle, Bose-Einstein Condensation in a Gas of Sodium Atoms, Phys. Rev. Lett. 75,

(1995), pp. 3969-3973. https://doi.org/10.1103/PhysRevLett.75.3969

8. J. A. C. Weideman and V. M. Herbst, Split-step methods for the solution of the

nonlinear Schrodinger equation, SIAM, J. Numer. Anal. 23 (3), (1986), pp. 485-507.

https://doi.org/10.1137/0723033

9. P. Muruganandam and S. K. Adhikari, Bose-Einstein condensation dynamics in three

dimensions by the pseudospectral and finite-difference methods, J.Phys.B 36, (2003), pp.

2501–2513. https://doi.org/10.1088/0953-4075/36/12/310



10 Tsogbayar et.al

10. W. Bao, D. Jaksch, and P. A. Markowich, Numerical solution of the Gross-Pitaevskii

equation for Bose-Einstein condensation, J. Comp. Phys. 187, (2003), pp. 318-342.

https://doi.org/10.1016/S0021-9991(03)00102-5

11. H. Wang, Numerical studies on the split-step finite difference method for

nonlinear Schrödinger equations, App. Math. Comp. 170, (2005), pp. 17-35.

https://doi.org/10.1016/j.amc.2004.10.066

12. H. Wang, X. Ma, J. Lu, and W. Gao, An efficient time-splitting compact finite difference

method for Gross-Pitaevskii equation, App. Math. Comp. 297, (2016), pp. 131-144.

https://doi.org/10.1016/j.amc.2016.10.037

13. A.D. Bandrauk, H. Shen, Exponential split operator methods for solving coupled

time-dependent Schrodinger equations, J. Chem. Phys. 99 (2) (1993), pp. 1185-1193.

https://doi.org/10.1063/1.465362

14. Ts. Tsogbayar, M. Horbatsch, Calculation of Stark resonance parameters for the

hydrogen molecular ion in a static electric field, J. Phys. B 46, (2013), 085004.

https://doi.org/10.1088/0953-4075/46/8/085004

15. Ts. Tsogbayar, Ts. Banzragch, and Kh. Tsookhuu, Numerical solution to the

time-independent Gross-Pitaevskii equation, J. App. Sc. Eng. A 2 (1), (2021), pp. 71-75.

16. Ts. Tsogbayar, D. L. Yeager, A numerical Hartree self-consistent field calculation of an

autoionization resonance parameters for a doubly excited 2s 2 , 3s 2 , and 4s 2 states

of He atom with a complex absorbing potential Chin. Phys. B 26 (8) (2017) 083101.

https://doi.org/10.1088/1674-1056/26/8/083101

17. C. M. Dion and E. Cances, Spectral method for the time-dependent

Gross-Pitaevskii equation with a harmonic trap, Phys. Rev. E 67, (2003), 046706.

https://doi.org/10.1103/PhysRevE.67.046706

18. P.A. Ruprecht, M.J. Holland, K. Burnett, and M. Edwards, Time-dependent solution of the

nonlinear Schrodinger equation for Bose-condensed trapped neutral atoms, Phys. Rev. A 51,

(1995), pp. 4704-4711. https://doi.org/10.1103/PhysRevA.51.4704




