A study on the effect of windbreaks of forest strips established in sandy soil regions of central Mongolia

Authors

  • Ganchudur Tsetsegmaa Division of Desertification Research, Institute of Geography and Geoecology, Mongolian Academy of Sciences, Ulaanbaatar, Mongolia https://orcid.org/0000-0001-9759-9256
  • Cho Wonwoo Division of Garden and Plant Resources, Korean National Arboretum, South Korea
  • Khaulanbek Akhmadi Division of Desertification Research, Institute of Geography and Geoecology, Mongolian Academy of Sciences, Ulaanbaatar, Mongolia
  • Hoduck Kang Department of Biological and Environmental Science, Dongguk University Biomedi Campus, South Korea

DOI:

https://doi.org/10.5564/mjgg.v61i45.3404

Keywords:

Tree growth, Long-term monitoring, Windbreak effect

Abstract

The purpose of this research was to estimate the wind force reduction effects of different types of tree species in windbreak, based on monitoring results. Field experiments were carried out during 2010–2017 at the Research and Experimental Center for Combating Desertification (47°27′N, 103°68′E; 1967 m a.s.l) in Elsen Tasarkhai, Khugnu-Tarna National Park in Rashaant soum of Bulgan province, central Mongolia. The studied tree species included Acer tataricum, Populus sibirica, Malus Pallasiana, Ulmus pumila, Salix ledebouriana and Caragana arborescens. The wind data collected by the Hobo loggers were downloaded using Onset HOBOware® Lite Software Version 2.2.1 (Onset Computer Corporation, Pocasset, MA). The estimation procedure incorporated the 1999 version of the windbreak sub-model of the Wind Erosion Prediction System (WEPS). Windbreak effects were estimated in terms of friction velocity reduction, which is a function of wind speed and direction, distance from the barrier, tree height, porosity, width and orientation. Windbreak characteristics (windbreak type, height, width, porosity, and location) were recorded. A significant effect of windbreak on airflow reduction was proven on the leeward side of windbreak in a belt corresponding to approximately 15-30 times the height of the windbreaks and it depended on the optical porosity. During the monitoring period, the impacts were varied, but all species had reduced the wind speed to a certain distance. As a result, the annual growth rate of tree species showed the significant importance of wind protection. By identifying the effect of shelterbelts on living windbreaks and wind data using long-term monitoring in sandy soil regions of central Mongolia, advanced tree planting and forest strip establishing methods would be developed.

Монгол орны ой, тайгын хөрсний урвалын орчин (pH)-ы шинж чанар ба онцлог   ХУРААНГУЙ: Монгол орны хөрсний судалгаануудад ой, тайгын хөрсний урвалын орчны тухай дурдагдсан байдаг боловч хөрсний хэв шинжээр нь урвалын орчныг харьцуулан судалсан судалгааны ажлууд дутмаг байна. Энэхүү судалгааны ажлын зорилго нь Хангай, Хэнтий, Хөвсгөлийн уулсын ой, тайгын хөрсний урвалын орчны онцлог шинж чанар, ялгаатай байдлыг судлахыг зорьсон. Монгол оронд 2024 оноос өмнө хийгдэж байсан ойн хөрсний 301 зүсэлтийн 1558 ширхэг дээжийн дүн мэдээллийг ашиглав. Хөрсний урвалын орчныг хөрс усны 1:2.5 харьцаагаар Thermo scientific Orion 5 star багаж ашиглаж тодорхойлсон. Монгол орны ойд Тайгын цэвдэг, Тайгын ширэгт, Чандруулаг, Ойн бараан, Нугархаг ойн бараан, Сул чандруулаг элсэн, Татмын ойн зэрэг хэв шинжийн хөрс голчлон тархсан байдаг. Эдгээр хөрсний хэв шинж бүрийн урвалын орчныг хооронд нь харьцуулах аргаар энэхүү судалгааны үр дүнг боловсруулав. Мөн хөрсний дээд (topsoil) үе давхарга дахь урвалын орчныг доод (subsoil) үе давхарга дахь урвалын орчны агууламжтай харьцуулахаас гадна хөрсний генетик үе давхаргууд дах урвалын орчныг судалсан. R studio Тукей (Tukey) тест ашиглан ойн хөрсний хэв шинж, төрөл хооронд урвалын орчин ялгаатай эсэхийг шалгасан. Монгол орны ойн хөрсний урвалын орчин 3.50-8.55 хооронд байх бөгөөд дунджаар 6.39 буюу сул хүчиллэг шинж чанартай байна. Тукей тестийн үр дүнгээр хөрсний урвалын орчин ойн хэв шинж бүрд ялгаатай байсан (p < 0.05). Тайгын чандруулаг хөрс хамгийн хүчиллэг буюу pH=4.9 байхад Нарсан ойн сул чандруулаг элсэн хөрс хамгийн шүлтлэг буюу pH= 6.96 байна. Хөрсний дээд үе давхарга буюу О органик үе давхаргад илүү хүчиллэг (pH 6.0) байх бөгөөд доошлох тусам ойн хөрс илүү шүлтлэг (pH 7.32) шинж чанартай болж байна. Газарзүйн тархалтаар ойн хөрсний урвалын орчныг харахад Хөвсгөл нуурын баруун тал, дархадын хотгор орчмын ойн хөрсний урвалын орчин (pH) дунджаар 7.51-8.09 байна. Энэ нь бусад ойн хөрсний урвалын орчинтой харьцуулахад маш шүлтлэг бөгөөд Монгол орны зарим ой, мод илүү шүлтлэг орчинд ургадаг онцлогтойг харуулж байна.    Түлхүүр үгс: Хөрсний урвалын орчин, pH, Ойн хөрс, Хөрс, Хангай, Хэнтий, Хөвсгөл, Монгол

Downloads

Download data is not yet available.
Abstract
27
PDF
18

References

Woodruff, N.P., 1972. How to control wind erosion (No. 354). US Department of Agriculture.

. Vacek, Z., Řeháček, D., Cukor, J., Vacek, S., Khel, T., Sharma, R.P., Kučera, J., Král, J. and Papaj, V., 2018. Windbreak efficiency in agricultural landscape of the Central Europe: multiple approaches to wind erosion control. Environmental management, 62, pp.942-954.

. Smith, M.M., Bentrup, G., Kellerman, T., MacFarland, K., Straight, R. and Ameyaw, L., 2021. Windbreaks in the United States: A systematic review of producer-reported benefits, challenges, management activities and drivers of adoption. Agricultural Systems, 187, p.103032.

. Iwasaki, K., Shimoda, S., Nakata, Y., Hayamizu, M., Nanko, K. and Torita, H., 2024. Remote sensing of soil ridge height to visualize windbreak effectiveness in wind erosion control: A strategy for sustainable agriculture. Computers and Electronics in Agriculture, 219, p.108778.

. Caborn, J.M., 1965. Shelterbelts and wind-breaks. Shelterbelts and wind-breaks.

. Skidmore, E.L., 1986. Soil erosion by wind: an overview. Physics of desertification, pp.261-273.

. Dong, G.N., Chen, T.G., Ren, C.J. and Wang, K., 2023. Wind tunnel investigation of wind reduction effect under porous fences protection. Journal of Wind Engineering and Industrial Aerodynamics, 232, p.105250.

. Xu, H., Wang, Y., Han, T., Li, R., Ma, J., Qiu, X., Ying, L. and Zheng, H., 2024. Enhanced assessment of regional impacts from wind erosion by integrating particle size. CATENA, 239, p.107937.

. Blanco, H. and Lal, R., 2023. Soil Conservation and Management. Springer Nature.

. Nordstrom, K. F., & Hotta, S. (2004). Wind erosion from cropland in the USA: A review of problems, solutions and prospects. Geoderma, 121, 157–167. https://doi.org/10.1016/j.geoderma.2003.11.012

. Chepil, W.S., 1959. Equilibrium of soil grains at the threshold of movement by wind. Soil Science Society of America Journal, 23(6), pp.422-428.

. Hagen, L. 1996. WEPS, USDA Wind Erosion Prediction System. Technical Documentation.

. Vigiak, O., Sterk, G., Warren, A. & Hagen, L.J. 2003. Spatial modeling of wind speed around windbreaks. Catena, 52(3-4): 273-288.

. Sterk, G., 2003. Causes, consequences and control of wind erosion in Sahelian Africa: a review. Land Degradation & Development, 14(1), pp.95-108.

. Tsogtbaatar, J., 2002, July. Forest policy development in Mongolia. In IUFRO Science/Policy Interface Task Force Regional Meeting (Chennai).

. Bulgan, D., Mandakh, N., Odbayar, M., Otgontugs, M., Tsogtbaatar, J., Elbegjargal, N., Erdenetuya, M. (2013). Desertification atlas of Mongolia. Institute of Geoecology, Mongolian Academy of Sciences and Environmental Information Centre, Ministry of Green Development, Ulaanbaatar, Mongolia.

. Khaulanbek, A., Mandakh, N., Munkhnasan, L., Ganchudur, Ts., Bataa, D., Itght, N., Gurragchaa, T., Nyamdash, S., 2010. "Desertification in some central settlements in dry and drought regions, management of measures to combat and reduce it" Science and technology project academic report (2008-2010).

. Natsagdorj, L., Jugder, D. and Chung, Y.S., 2003. Analysis of dust storms observed in Mongolia during 1937–1999. Atmospheric Environment, 37(9-10), pp.1401-1411.

. Han, J., Dai, H. and Gu, Z., 2021. The Dusty Spring: 2021 East Asia Sandstorm, Trans-Regional Impact, Ecological Imperatives in Mongolia. Trans-Regional Impact, Ecological Imperatives in Mongolia (April 9, 2021).

. Kang, S., Lee, S.H., Cho, N., Aggossou, C. and Chun, J., 2021. Dust and sandstorm: ecosystem perspectives on dryland hazards in Northeast Asia: a review. Journal of Ecology and Environment, 45, pp.1-9.

. Wang, J., Chen, L. and Li, S., 2024. Characteristics of spring Mongolian cyclones in the recent 70 years: Background circulations and weather influences. International Journal of Climatology, 44(1), pp.328-343.

. The Government of Mongolia, 2020. The vision-2050. The Government of Mongolia.

. Dureng, B., 2022. Risk Identification from the Perspective of South-South Cooperation—Evidence from China and Mongolia Agricultural Technology Cooperation: Risk Identification from the Perspective of South-South Cooperation—Evidence from China and Mongolia Agricultural Technology Cooperation. Journal of Social Sciences and Economics, 1(1), pp.32-39.

. Borodyna, O., Mami, E. and Nijhar, I., 2023. Mongolia: Towards sustainable economic recovery. ODI Emerging Analysis. London: ODI.

. Dashtseren, B., 2024. Mongolian Game on Geopolitical Chessboard or the comprehensive national power of Mongolia.

. Lamchin, M., Lee, W.K., Jeon, S.W., Lee, J.Y., Song, C., Piao, D., Lim, C.H., Khaulenbek, A. and Navaandorj, I., 2017. Correlation between desertification and environmental variables using remote sensing techniques in Hogno Khaan, Mongolia. Sustainability, 9(4), p.581.

. Gunin, P.D., Vostokova, E.A., Dorofeyuk, N.I., Tarasov, P.E. & Black, C.C. 2013. Vegetation dynamics of Mongolia, 26. Springer Science and Business Media.

. Hunt, R., 1982. Plant growth curves. The functional approach to plant growth analysis. Edward Arnold Ltd.

. Panofsky, H.A. & Dutton, J. 1984. Atmospheric turbulence: models and methods for engineering applications, 397 pp. John Wiley, Hoboken, NJ.

. Pommerening, A., Muszta, A., 2015. Methods of modelling relative growth rate. Forest Ecosystems, 2(1): 5.

. Van den Driessche, R., 1992. Absolute and relative growth of Douglas-fir seedlings of different sizes. Tree Physiology, 10(2): 141-152.

. Panofsky, H.A. and Dutton, J.A., 1984. Atmospheric turbulence. Models and methods for engineering applications. New York: Wiley.

. Böhner, J., Schäfer, W., Conrad, O., Gross, J. and Ringeler, A., 2003. The WEELS model: methods, results and limitations. Catena, 52(3-4), pp.289-308.

. Woodruff, N.P. & Zingg, W., 1952. Wind-tunnel studies of fundamental problems related to windbreaks.

. Blanco, H. & Lal, R., 2008. Principles of Soil Conservation and Management: Springer Science Business Media BV p 626. Google Scholar.

. Zobeckb, T.M., 1991. Soil properties affecting wind erosion. Journal of Soil and Water Conservation, 46(2): 112-118.

. Wang, H. and Takle, E.S., 1997. Model-simulated influences of shelterbelt shape on wind-sheltering efficiency. Journal of Applied Meteorology, 36(6): 695-704

. Grant, P. & Nickling, W., 1998. Direct field measurement of wind drag on vegetation for application to windbreak design and modelling. Land Degradation and Development, 9(1): 57-66.

. Wu, X., Zou, X., Zhou, N., Zhang, C. & Shi, S. 2015. Deceleration efficiencies of shrub windbreaks in a wind tunnel. Aeolian Research, 16: 11-23.

. Ozawa, H., Sakamoto, T. & Hagino, H. 2007. Influence of thinning on the shelter effect of windbreaks as clarified by a wind tunnel experiment. Journal of Forest Research, 12(3): 222-229.

. Heisler, G.M. & Dewalle, D.R. 1988. Effects of windbreak structure on wind flow, Windbreak technology. Elsevier, pp. 41-69.

. Raine, J.K. & Stevenson, D.C. 1977. Wind protection by model fences in a simulated atmospheric boundary layer. Journal of Wind Engineering & Industrial Aerodynamics, 2(2): 159-180.

. Bird, P.R., Bicknell, D., Bulman, P.A., Burke, S.J.A., Leys, J.F., Parker, J.N., van der Sommen, F.J., Voller, P. 1992. The role of shelter in Australia for protecting soils, plants and livestock, The Role of Trees in Sustainable Agriculture. Springer, pp. 59-86.

. Rouse, R.J. & Hodges, L. 2004. Windbreaks. Agronomy-Faculty Publications: 427.

Downloads

Published

2024-12-27

How to Cite

Tsetsegmaa, G., Wonwoo, C., Akhmadi, K., & Kang, H. (2024). A study on the effect of windbreaks of forest strips established in sandy soil regions of central Mongolia. Mongolian Journal of Geography and Geoecology, 61(45), 218–231. https://doi.org/10.5564/mjgg.v61i45.3404

Issue

Section

Articles