Relationship between near ground surface temperature and land cover types of eastern lake Khuvsgul
DOI:
https://doi.org/10.5564/mjgg.v61i45.3343Keywords:
Permafrost, Temperature, Land cover, Khuvsgul lakeAbstract
Mongolia, a country located in Central Asia, is known for its extreme climate and distinct natural landscape. However, in recent years, the effects of global warming have accelerated permafrost degradation, leading to significant ecological and environmental disturbances. This study was conducted to investigate these changes and contribute to the preservation of Mongolia's pristine nature and unique environmental structure. Specifically, the research focuses on the relationship between thawing permafrost and temperature on the eastern shore of Lake Khuvsgul, considering natural factors such as vegetation and snow cover. In the study area, 31 surface temperature monitoring devices were installed at 300-meter intervals across four distinct types of ground cover: grassland, wetland, forest, and shrubland. These temperature readings were then used to calculate various indices. The highest ground surface temperature during the summer, 28.2°C, was recorded at point A-14, while the lowest winter temperature, -19.31°C, was observed at point A-17, both located in grassland areas. The frost number, an index used to measure thawing, registered values below 0.5 only at grassland points, indicating a higher likelihood of permafrost presence at other locations. Additionally, the N-factor, which reflects seasonal temperature variations, was found to be lower in forested areas and higher in grassland areas. Points located in forests were notably cooler in the summer and warmer in the winter compared to those points in grasslands. The surface temperature during winter was also affected by the snow accumulation that year, becoming colder as the snow cover increased. Furthermore, the N-factor decreased with thicker snow during the winter season. Snow cover duration in 2022-2023 was 9-11 days longer compared to the previous year (2021-2022).
Монгол орны нуурын геоморфологийн шинэ мужлал
Монгол орон нь төв Азид орших эрс тэс уур амьсгалтай орнуудын нэг бөгөөд байгалийн зүй тогтоц, бүтцээрээ бусад орнуудаас онцлогтой. Сүүлийн жилүүдэд явагдаж буй дэлхийн дулааралтай холбоотойгоор Монгол орны цэвдгийн алдрал эрчимжиж байгаль, экологийн тэнцвэрт байдал алдагдсаар байна. Тийм ч учраас тухайн бүс нутгийн байгалийн унаган төрх, өвөрмөц бүтцийг хадгалах зорилгоор энэхүү судалгааг хийх шаардлага тулгараад байна. Бид тус судалгааны хүрээнд Хөвсгөл нуурын зүүн эрэгт орших цэвдэг болон температур хоорондын хамаарлыг байгалийн хүчин зүйлс болох ургамал, цасан бүрхэвчтэй холбон тайлбарлахыг зорьсон. Судалгааны талбайд нийтдээ 31 ширхэг гадаргын температур хэмжигч багажуудыг 300 метрийн зайтайгаар өөр өөр дөрвөн газрын бүрхэвчийн хэв шинж бүхий байршилд (Нуга, Намаг, Ой, Сөөг) суурилуулан тэдгээрийн утгуудыг ашиглаж зарим индексүүдийг тооцоолсон. Хөлдөлт болон гэсэлтийн индексийн хувьд газрын гадарга дээрх хамгийн дулаан температур зуны улиралд А -14 цэгт 2282°C байсан бол хамгийн хүйтэн температур өвлийн улиралд А-17 цэгт -1931°C-тэй тус тус нугад байрлах дэх цэгүүдэд бүртгэгдсэн байна. Frost number буюу цэвдгийн индекс нь зөвхөн нугад орших цэгүүдэд 0.5-аас доош утгуудыг үзүүлж бусад цэгүүдэд цэвдэг байх магадлал өндөртэйг илтгэсэн. Харин хүйтэн болон дулааны улирлын N-factor нь ойтой цэгүүдэд бага, нугад байх цэгүүдэд өндөр байгаа нь ажиллагдсан. Зуны улиралд ойтой цэгүүд, нугад орших цэгүүдээс харьцангуй сэрүүн байдаг бол өвлийн улиралд дулаан байдаг нь ажиллагдсан. Мөн өвлийн улирлын гадаргын температур тухайн жилд орсон цасны жингээс хамааран сэрүүсэж байсан бол цасны зузаанаас хамаарч өвлийн улирлын N-factor багасаж байгаа зүй тогтол гарсан. 2022-2023 оны тогтвортой цасан бүрхүүлтэй өдрүүд өмнөх оныхоос (2021-2022) 9-11 хоногоор урт үргэлжилсэн байна. Түлхүүр үгс: Цэвдэг, Температур, Нуга, Ой, Хөвсгөл нуурDownloads
29
References
[1]. D. Battogtokh et al., “Features and Mapping of Permafrost Distribution in Ulaanbaatar area, Mongolia,” in International workshop on terrestrial change in Mongolia—-joint workshop of IORGC, MAVEX, RAISE and Other Projects, Tokyo, Japan, Citeseer, 2006.
[2]. M. Zorigt et al., “Modeling permafrost distribution over the river basins of Mongolia using remote sensing and analytical approaches,” Environ. Earth Sci., vol. 79, no. 12, p. 308, Jun. 2020, https://doi.org/10.1007/s12665-020-09055-7.
[3]. E. S. F. Heggem, B. Etzelmüller, S. Anarmaa, N. Sharkhuu, C. E. Goulden, and B. Nandinsetseg, “Spatial distribution of ground surface temperatures and active layer depths in the Hövsgöl area, northern Mongolia,” Permafr. Periglac. Process., vol. 17, no. 4, pp. 357–369, Oct. 2006, https://doi.org/10.1002/ppp.568.
[4]. L. Zhao, S. Marchenko, N. Sharkhuu, and T. Wu, “Regional changes of permafrost in Central Asia,” in Extended Abstracts, Proceedings Ninth International Conference on Permafrost, Institute of Northern Engineering, University of Alaska: Fairbanks, 2008, pp. 2061–2069.
[5]. B. Etzelmüller, E. S. F. Heggem, N. Sharkhuu, R. Frauenfelder, A. Kääb, and C. Goulden, “Mountain permafrost distribution modelling using a multi-criteria approach in the Hövsgöl area, northern Mongolia,” Permafr. Periglac. Process., vol. 17, no. 2, pp. 91–104, Apr. 2006, https://doi.org/10.1002/ppp.554.
[6]. A. Dashtseren, K. Temuujin, S. Westermann, A. Batbold, Y. Amarbayasgalan, and D. Battogtokh, “Spatial and Temporal Variations of Freezing and Thawing Indices From 1960 to 2020 in Mongolia,” Front. Earth Sci., vol. 9, p. 713498, Nov. 2021, https://doi.org/10.3389/feart.2021.713498.
[7]. Е. Батчулуун, Монгол орны физик газарзүй. Улаанбаатар хот: Мөнхийн үсэг ХХК, 2020.
[8]. D. Luo, H. Jin, S. S. Marchenko, and V. E. Romanovsky, “Difference between near-surface air, land surface and ground surface temperatures and their influences on the frozen ground on the Qinghai-Tibet Plateau,” Geoderma, vol. 312, pp. 74–85, Feb. 2018, https://doi.org/10.1016/j.geoderma.2017.09.037.
[9]. D. Luo, H. Jin, R. Jin, X. Yang, and L. Lü, “Spatiotemporal variations of climate warming in northern Northeast China as indicated by freezing and thawing indices,” Quat. Int., vol. 349, pp. 187–195, Oct. 2014, https://doi.org/10.1016/j.quaint.2014.06.064.
[10]. D. Riseborough, “Thawing and freezing indices in the active layer,” in Proceedings of the 8th International Conference on Permafrost, Rotterdam: AA Balkema, 2003, pp. 953–958.
[11]. F. E. Nelson and S. I. Outcalt, “A Computational Method for Prediction and Regionalization of Permafrost,” Arct. Alp. Res., vol. 19, no. 3, p. 279, Aug. 1987, https://doi.org/10.2307/1551363.
[12]. S. Huang, L. Tang, J. P. Hupy, Y. Wang, and G. Shao, “A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing,” J. For. Res., vol. 32, no. 1, pp. 1–6, Feb. 2021, https://doi.org/10.1007/s11676-020-01155-1.
[13]. T. Zhang, “Influence of the seasonal snow cover on the ground thermal regime: An overview,” Rev. Geophys., vol. 43, no. 4, p. 2004RG000157, Dec. 2005, https://doi.org/10.1029/2004RG000157.
[14]. Y. Ran, X. Li, R. Jin, and J. Guo, “Remote Sensing of the Mean Annual Surface Temperature and Surface Frost Number for Mapping Permafrost in China,” Arct. Antarct. Alp. Res., vol. 47, no. 2, pp. 255–265, May 2015, https://doi.org/10.1657/AAAR00C-13-306.
[15]. K. Gisnås et al., “A statistical approach to represent small-scale variability of permafrost temperatures due to snow cover,” The Cryosphere, vol. 8, no. 6, pp. 2063–2074, Nov. 2014, https://doi.org/10.5194/tc-8-2063-2014.
[16]. A. Dashtseren, M. Ishikawa, Y. Iijima, and Y. Jambaljav, “Temperature Regimes of the Active Layer and Seasonally Frozen Ground under a Forest-Steppe Mosaic, Mongolia,” Permafr. Periglac. Process., vol. 25, no. 4, pp. 295–306, Oct. 2014, https://doi.org/10.1002/ppp.1824.
[17]. Я. Жамбалжав, Монгол орны цэвдгийн тархалт, өөрчлөлт. Улаанбаатар хот: Колорфул ХХК, 2017.
[18]. Д. Төмөрбаатар, Монгол орны улирлын ба олон жилийн цэвдэг чулуулаг. Улаанбаатар хот: Урлах эрдэм ХХК, 2004.
[19]. K. Karunaratne and C. Burn, “Freezing n-factors in discontinuous permafrost terrain, Takhini River, Yukon Territory, Canada,” in Proceedings of the 8th International Conference on Permafrost, University of Alaska: Fairbanks, 2003, pp. 519–524.
[20]. A. Kade, V. E. Romanovsky, and D. A. Walker, “The n-factor of nonsorted circles along a climate gradient in Arctic Alaska,” Permafr. Periglac. Process., vol. 17, no. 4, pp. 279–289, Oct. 2006, https://doi.org/10.1002/ppp.563.
[21]. A. Sharkhuu et al., “Permafrost monitoring in the Hovsgol mountain region, Mongolia,” J. Geophys. Res. Earth Surf., vol. 112, no. F2, p. 2006JF000543, Jun. 2007, https://doi.org/10.1029/2006JF000543.
[22]. Ш. Цэгмид, Монгол орны физик газарзүй. Улаанбаатар хот: Улсын хэвлэлийн газар, 1969.
[23]. K. Temuujin, A. Dashtseren, B. Etzelmüller, T. Undrakhtsetseg, K. Aalstad, and S. Westermann, “Spatial variability of near-surface ground temperatures in a discontinuous permafrost area in Mongolia,” Front. Earth Sci., vol. 12, p. 1456012, Oct. 2024, https://doi.org/10.3389/feart.2024.1456012.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Enkhjargal Undrakhbayar, Dashtseren Avirmed, Temuujin Khurelbaatar, Maralmaa Ariunbold

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright on any research article in the Mongolian Journal of Geography and Geoecology is retained by the author(s).
The authors grant the Mongolian Journal of Geography and Geoecology a license to publish the article and identify itself as the original publisher.
Articles in the Mongolian Journal of Geography and Geoecology are Open Access articles published under a Creative Commons Attribution 4.0 International License CC BY.
This license permits use, distribution and reproduction in any medium, provided the original work is properly cited.