Soil moisture mapping using machine learning technique

Authors

  • Undrakhtsetseg Tsogtbaatar Division of Environmental and Natural Resource Management, Institute of Geography and Geoecology, Mongolian Academy of Sciences, Ulaanbaatar, Mongolia https://orcid.org/0000-0001-8806-6167
  • Sainbayar Dalantai Division of Environmental and Natural Resource Management, Institute of Geography and Geoecology, Mongolian Academy of Sciences, Ulaanbaatar, Mongolia
  • Bayartungalag Batsaikhan Division of Environmental and Natural Resource Management, Institute of Geography and Geoecology, Mongolian Academy of Sciences, Ulaanbaatar, Mongolia

DOI:

https://doi.org/10.5564/mjgg.v60i44.3062

Keywords:

Soil moisture, machine learning, SMAP

Abstract

Soil moisture is an essential component in the energy cycle, water resource, hydrological regime, and processes of the land surface. Mapping and monitoring of soil moisture are crucial for the prevention of flood and drought, estimation of evapotranspiration, and water resource management. Using remote sensing to create soil moisture mapping at large scale has become one of the most energy and time-efficient methods in soil study. Thus, we aimed to map the soil moisture for Mongolia based on downscaled Soil Moisture Active Passive (SMAP) data by combining it with the Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), and Land Surface Temperature (LST) of Moderate Resolution Imaging Spectroradiometer (MODIS) data using the Machine Learning-based Random Forest (RF) approach. The SMAP was positively correlated with NDVI (r=0.72, p<0.01) and EVI (r=0.73, p<0.01) but it was negatively correlated with LST (r= -0.66, p<0.05). The performance of the RF was high, and the correlation was r2=0.7. Therefore, our study suggests that the Machine Learning-based RF approach can be used to model soil moisture on a large scale.

Машин сургалтын аргаар хөрсний чийгийг зураглах арга зүй

Хөрсний чийг нь усны эргэлт, энергийн урсгалд чухал нөлөө үзүүлдгээс гадна, газрын гадаргын нөхцөл болон гадаргын усанд маш чухал нөлөөтэй. Иймд, хөрсний чийгийн зураглал болон мониторингийн судалгаа нь ган, зудын мониторинг, үерийн урьдчилсан сэрэмжлүүлэг болон усны нөөцийн менежментэд чухал үүрэг гүйцэтгэдэг судалгааны нэг юм. Сүүлийн үед, өргөн уудам газар нутагт хөрсний чийгийг зураглахын тулд зайнаас тандан судлалын аргыг ашиглах нь эдийн засаг болон цаг хугацааны хувьд үр ашигтай аргуудын нэг болоод байна. Иймд Монгол орны хэмжээнд хөрсний чийгийг зураглахдаа Soil Moisture Active Passive (SMAP) хиймэл дагуулын бүтээгдэхүүнийг ашиглан машин сургалтын санамсаргүй ой (RF)-н аргаар мэдээний орон зайн шийдийг сайжруулан зураглалаа. Ингэхдээ Moderate Resolution Imaging Spectroradiometer (MODIS) хиймэл дагуулын бүтээгдэхүүнүүдэд (ургамлын нормчилсон ялгаврын индекс (NDVI), ургамлын сайжруулсан индекс (EVI), газрын гадаргын температур (LST) тулгуурлан SMAP хиймэл дагуулын бүтээгдэхүүний орон зайн шийдийг сайжруулан өөрчилсөн, хамаарлыг тооцсон. Ингэхэд NDVI (r=0.72, p<0.01) болон EVI (r=0.73, p<0.01) нь SMAP-тай эерэг хамааралтай байсан бол LST (r= -0.66, p<0.05)-тай урвуу хамааралтай байсан. RF-н алгоритмаар машин сургалтын аргыг ашиглан Монгол орны хэмжээнд хөрсний чийгийг зураглахад загварын үр дүн гүйцэтгэл сайтай буюу хамаарал нь r2=0.7 гарсан. Иймд машин сургалтын санамсаргүй ойн алгоритмаар том хэмжээний газар нутгийг хамруулан хөрсний чийгийг загварчлах боломжтой болох нь судалгааны үр дүнгээс харагдаж байна.

Түлхүүр үгс: Хөрсний чийг, машин сургалт, SMAP

Abstract
49
PDF
77

References

О. Батхишиг, Хөрсний чийг хангамжийг сайжруулах арга зүй, зөвлөмж, Улаанбаатар, Монгол: Уудам соёл хэвлэлийн газар, 2016.

X. Wang, B. Wang, X. Xu, T. Liu, Y. Duan, and Y. Zhao, "Spatial and temporal variations in surface soil moisture and vegetation cover in the Loess Plateau from 2000 to 2015," Ecological Indicators, vol. 95, pp. 320-330, Dec. 2018, https://doi.org/10.1016/j.ecolind.2018.07.058

E. Natsagdorj et al., "An integrated methodology for soil moisture analysis using multispectral data in Mongolia," Geo-spatial Information Science, vol. 20, no. 1, pp. 46-55, Jan. 2017, https://doi.org/10.1080/10095020.2017.1307666

E. T. Engman, "Progress in Microwave Remote Sensing of Soil Moisture," Canadian Journal of Remote Sensing, vol. 16, no. 3, pp. 6-14, Oct. 1990, https://doi.org/10.1080/07038992.1990.11487620

Д. Аззаяа, Э. Эрдэнэбат, "Хөрсний чийгийн асуудалд," Ус Цаг Уурын хүрээлэн, Улаанбаатар, Эрдэм шинжилгээний бүтээл 26, 2004.

D. Zhang and G. Zhou, "Estimation of Soil Moisture from Optical and Thermal Remote Sensing: A Review," Sensors, vol. 16, no. 8, p. 1308, Aug. 2016, https://doi.org/10.3390/s16081308

D. Entekhabi et al., "The Soil Moisture Active Passive (SMAP) Mission," in Proceedings of the IEEE, vol. 98, no. 5, pp. 704-716, May 2010, https://doi.org/10.1109/JPROC.2010.2043918

. D. Entekhabi et al., "The Soil Moisture Active Passive (SMAP) Mission," Proc. IEEE, vol. 98, no. 5, pp. 704-716, May 2010, https://doi.org/10.1109/JPROC.2010.2043918

J. Im, S. Park, J. Rhee, J. Baik, and M. Choi, "Downscaling of AMSR-E soil moisture with MODIS products using machine learning approaches," Environ Earth Sci, vol. 75, no. 15, p. 1120, Aug. 2016, https://doi.org/10.1007/s12665-016-5917-6

J. Peng, A. Loew, O. Merlin, and N. E. C. Verhoest, "A review of spatial downscaling of satellite remotely sensed soil moisture," Reviews of Geophysics, vol. 55, no. 2, pp. 341-366, Jun. 2017, https://doi.org/10.1002/2016RG000543

S. Sabaghy, J. P. Walker, L. J. Renzullo, and T. J. Jackson, "Spatially enhanced passive microwave derived soil moisture: Capabilities and opportunities," Remote Sensing of Environment, vol. 209, pp. 551-580, May 2018, https://doi.org/10.1016/j.rse.2018.02.065

R. Bindlish and A. P. Barros, "Sub-pixel variability of remotely sensed soil moisture: an inter-comparison study of SAR and ESTAR," in IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293), Hamburg, Germany: IEEE, 1999, pp. 1917-1920 vol.4. https://doi.org/10.1109/IGARSS.1999.774986

J. Li, S. Wang, G. Gunn, P. Joosse, and H. A. J. Russell, "A model for downscaling SMOS soil moisture using Sentinel-1 SAR data," International Journal of Applied Earth Observation and Geoinformation, vol. 72, pp. 109-121, Oct. 2018, https://doi.org/10.1016/j.jag.2018.07.012

X. Wu, J. P. Walker, C. Rudiger, R. Panciera, and Y. Gao, "Medium-Resolution Soil Moisture Retrieval Using the Bayesian Merging Method," IEEE Trans. Geosci. Remote Sensing, vol. 55, no. 11, pp. 6482-6493, Nov. 2017, https://doi.org/10.1109/TGRS.2017.2728808

H. Lievens et al., "Joint Sentinel‐1 and SMAP data assimilation to improve soil moisture estimates," Geophysical Research Letters, vol. 44, no. 12, pp. 6145-6153, Jun. 2017, https://doi.org/10.1002/2017GL073904

J. Han, K. Mao, T. Xu, J. Guo, Z. Zuo, and C. Gao, "A soil moisture estimation framework based on the CART algorithm and its application in China," Journal of Hydrology, vol. 563, pp. 65-75, Aug. 2018, https://doi.org/10.1016/j.jhydrol.2018.05.051

H. Sun and Y. Cui, "Evaluating Downscaling Factors of Microwave Satellite Soil Moisture Based on Machine Learning Method," Remote Sensing, vol. 13, no. 1, p. 133, Jan. 2021, https://doi.org/10.3390/rs13010133

A. A. Nadeem et al., "Spatial Downscaling and Gap-Filling of SMAP Soil Moisture to High Resolution Using MODIS Surface Variables and Machine Learning Approaches over Shan Dian River Basin, China," Remote Sensing, vol. 15, no. 3, p. 812, Jan. 2023, https://doi.org/10.3390/rs15030812

Downloads

Published

2023-12-28

How to Cite

Tsogtbaatar, U., Dalantai, S. ., & Batsaikhan, B. . (2023). Soil moisture mapping using machine learning technique. Mongolian Journal of Geography and Geoecology, 60(44), 222–230. https://doi.org/10.5564/mjgg.v60i44.3062

Issue

Section

Articles