Changes in the surface area of lakes in the dry steppe: A case study in Buuntsagaan Lake

Authors

  • Batnyam Tseveengerel Division of Physical Geography and Environmental Research, Institute of Geography and Geoecology, Mongolian Academy of Sciences, Ulaanbaatar, Mongolia https://orcid.org/0000-0002-9634-5243
  • Purevsuren Munkhtur Division of Physical Geography and Environmental Research, Institute of Geography and Geoecology, Mongolian Academy of Sciences, Ulaanbaatar, Mongolia
  • Davaagatan Tuyagerel Division of Physical Geography and Environmental Research, Institute of Geography and Geoecology, Mongolian Academy of Sciences, Ulaanbaatar, Mongolia

DOI:

https://doi.org/10.5564/mjgg.v60i44.2923

Keywords:

Buuntsagaan Lake, Dry steppe ecosystem, Evaporation, Modification of Normalised, Difference Water Index

Abstract

Lakes in areas with fragile and dry steppe ecosystems are of great ecological and climatic importance, and  Buuntsagaan Lake is one of them in Mongolia. It is the largest lake of the Valley of the Lakes situated in the Khangai and the Gobi-Altai Mountain Range. In this study, we aimed to evaluate changes in the surface area of Buuntsagaan Lake between 1986 and 2022 and determine factors affecting it. We used Landsat satellite imageries to calculate the Modification of Normalised Difference Water Index for estimating the surface area of the Buuntsagaan Lake and assessed the dynamic changes in evaporation using Meyer's formula. Also, we performed field measurements at 74 points along the shore of Buuntsagaan Lake during the summer of 2022. The Kappa coefficient was used to examine the accuracy of the surface area. According to the results, it is observed that the surface area of Buuntsagaan Lake was the greatest in 1994 and 2000. However, the overall surface area decreased by 7.9% over the last 36 years, and the fluctuation in changes in the average annual surface area was around 0.34%. In addition, it is also indicated that the changes in the surface area of the lake were mainly affected by air temperature, the maximum speed of the wind, and the discharge of the Baidrag River. In conclusion, the tendency to decrease the surface area is expected to continue.

Хуурай хээрийн бүс дэх нуурын талбайн өөрчлөлт: Бөөнцагаан нуурын жишээн дээр

ХУРААНГУЙ: Хуурай хээрийн эмзэг экосистемтэй газар нутагт орших нуур нь экологи, уур амьсгалын хувьд чухал ач холбогдолтой бөгөөд Монгол орны нутагт орших Бөөнцагаан нуур нь тэдгээр нууруудын нэг юм. Бөөнцагаан нуур нь Хангайн нуруу болон Говь-Алтайн нурууны хоорондох Нууруудын хөндийд орших хамгийн том нуур юм. Энэхүү судалгааны зорилго нь Бөөнцагаан нуурын талбайн өөрчлөлтийг 1986-2022 он хүртэл тооцож, талбайн өөрчлөлтөд нөлөөлж буй хүчин зүйлсийг үнэлэх юм. Бөөнцагаан нуурын усан гадаргын талбайн өөрчлөлтийг Ландсат хиймэл дагуулын цуврал мэдээг ашиглан “Засварт нормчлогдсон ялгаврын усны өөрчлөлтийн индекс”-ийн тусламжтайгаар тооцоолж, нуурын ууршилтын олон жилийн динамикийг Мейерийн нуураас уурших ууршилтын томьёог ашиглан илрүүлсэн. Түүнчлэн хээрийн судалгааг 2022 оны зуны улиралд явуулж, нуурын эргийн хэмжилтийг 74 цэг дээр хийсэн. Нуурын усан гадаргын талбайн өөрчлөлтийн үнэмшлийг каппа коэффициентоор шалгасан. Тус судалгааны үр дүнд Бөөнцагаан нуурын талбай 1994-2000 онуудад хамгийн том усан гадаргатай байсан нь ажиглагдсан боловч сүүлийн 36 жилийн хугацаанд нуурын талбай 7.9%-иар багасаж, нуурын дундаж талбайн жилийн өөрчлөлтийн хэлбэлзэл 0.34% байсан. Түүнчлэн агаарын температур, салхины хамгийн их хурд болон Байдраг голын урсац нь тус нуурын талбайн өөрчлөлтөд нөлөөлж буй голлох хүчин зүйлүүд бөгөөд цаашид ч тус нуурын гадаргын талбайн хэмжээ буурах хандлагатай байна.

Түлхүүр үгс: Бөөнцагаан нуур, хуурай хээрийн бүс, ууршилт, MNDWI

Abstract
43
PDF 31

References

. G. Davaa, D. Oyunbaatar, and M. Sugita, "Surface water of Mongolia In: Editorial Board Committee of Mongolia environmental handbook editors Mongolia Environmental Handbook," Tokyo, Japan, 2008.

. J. Ma and W. M. Edmunds, "Groundwater and lake evolution in the Badain Jaran Desert ecosystem, Inner Mongolia," Hydrogeol. J., vol. 14, no. 7, pp. 1231-1243, Nov. 2006, https://doi.org/10.1007/s10040-006-0045-0

. C. Castañeda, J. Herrero, and M. Auxiliadora Casterad, "Landsat monitoring of playa-lakes in the Spanish Monegros desert," J. Arid Environ., vol. 63, no. 2, pp. 497-516, Oct. 2005, https://doi.org/10.1016/j.jaridenv.2005.03.021

. R. Chopra, V. K. Verma, and P. K. Sharma, "Mapping, monitoring and conservation of Harike wetland ecosystem, Punjab, India, through remote sensing," Int. J. Remote Sens., vol. 22, no. 1, pp. 89-98, Jan. 2001, https://doi.org/10.1080/014311601750038866

. G. Davaa, Surface water regime and resources of Mongolia. Ulaanbaatar: Admon publisher, 2015.

. Orkhonselenge, G. Komatsu, and M. Uuganzaya, "Climate-Driven Changes in Lake Areas for the Last Half Century in the Valley of Lakes, Govi Region, Southern Mongolia," Nat. Sci., vol. 10, no. 07, pp. 263-277, 2018, https://doi.org/10.4236/ns.2018.107027

. G. Tuvshin, T. Khosbayar, and D. Davaadorj, "The methodology of studying changes in the gobi region's lake area," Proc. Mong. Acad. Sci., vol. 58, pp. 28-39, 2018, https://doi.org/10.5564/pmas.v58i1.970

. S. Kang and S. Y. Hong, "Assessing Seasonal and Inter-Annual Variations of Lake Surface Areas in Mongolia during 2000-2011 Using Minimum Composite MODIS NDVI," PLOS ONE, vol. 11, no. 3, p. e0151395, Mar. 2016, https://doi.org/10.1371/journal.pone.0151395

. "Baidrag River Water Management Plan," 2014.

. D. Szumińska, "Changes in surface area of the Böön Tsagaan and Orog lakes (Mongolia, Valley of the Lakes, 1974-2013) compared to climate and permafrost changes," Sediment. Geol., vol. 340, pp. 62-73, Jul. 2016, https://doi.org/10.1016/j.sedgeo.2016.03.002

. J. A. Downing et al., "The global abundance and size distribution of lakes, ponds, and impoundments," Limnol. Oceanogr., vol. 51, no. 5, pp. 2388-2397, Sep. 2006, https://doi.org/10.4319/lo.2006.51.5.2388

. E. E. Gaiser, D. L. Childers, R. D. Jones, J. H. Richards, L. J. Scinto, and J. C. Trexler, "Periphyton responses to eutrophication in the Florida Everglades: Cross‐system patterns of structural and compositional change," Limnol. Oceanogr., vol. 51, no. 1part2, pp. 617-630, Jan. 2006, https://doi.org/10.4319/lo.2006.51.1_part_2.0617

. C. Stoate et al., "Ecological impacts of early 21st century agricultural change in Europe - A review," J. Environ. Manage., vol. 91, no. 1, pp. 22-46, Oct. 2009, https://doi.org/10.1016/j.jenvman.2009.07.005

. C. J. Vörösmarty et al., "Global threats to human water security and river biodiversity," Nature, vol. 467, no. 7315, pp. 555-561, Sep. 2010, https://doi.org/10.1038/nature09440

. S. Narangerel, "Assessment of the ecological capacity of the baidrag river basin at the landscape level for further action to protect and use it properly (Landscape and ecological capacity assessment of the tributaries of Buun Tsagaan Lake (Baidrag River Basin)," Ulaanbaatar, 2022.

. J. Tserensodnom, Lakes of Mongolia. Ulaanbaatar, 1971.

. P. S. Frazier and K. J. Page, "Water Body Detection and Delineation with Landsat TM Data," Photogramm. Eng., p. 7.

. S. K. McFEETERS, "The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features," Int. J. Remote Sens., vol. 17, no. 7, pp. 1425-1432, May 1996, https://doi.org/10.1080/01431169608948714

. C. Munyati, "Wetland change detection on the Kafue Flats, Zambia, by classification of a multitemporal remote sensing image dataset," Int. J. Remote Sens., vol. 21, no. 9, pp. 1787-1806, Jan. 2000, https://doi.org/10.1080/014311600209742

. Y. Sheng, P. Gong, and Q. Xiao, "Quantitative dynamic flood monitoring with NOAA AVHRR," Int. J. Remote Sens., vol. 22, no. 9, pp. 1709-1724, Jan. 2001, https://doi.org/10.1080/01431160118481

. H. Xu, "Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery," Int. J. Remote Sens., vol. 27, no. 14, pp. 3025-3033, Jul. 2006, https://doi.org/10.1080/01431160600589179

. C. W. Thornthwaite, "An Approach toward a Rational Classification of Climate," Geogr. Rev., vol. 38, no. 1, p. 55, Jan. 1948, https://doi.org/10.2307/210739

. L. L. Blaney and W. D. Criddle, "Determining water requirements in irrigated areas from climatological and irrigation data," US Dep. Agric. Soil Conserv. Serv. Tech. Pap., vol. 96, 1952.

. R. J. Priestley and R. J. Taylor, "On the assessment of surface heat flux and evaporation using large-scale parameters," Mon. Weather Rev., vol. 100, no. 2, pp. 81-82, 1972. https://doi.org/10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2

. G. H. Hargreaves, "Review: Estimating potential evapotranspiration," J. Irrig. Drain. Eng., vol. 108, no. 3, pp. 225-230, 1985. https://doi.org/10.1061/JRCEA4.0001390

A. Meyer, "Computing run-off from rainfall and other physical data," Trans. Am. Soc. Civ. Eng., vol. 79, pp. 1056-1224, 1915. https://doi.org/10.1061/TACEAT.0002707

. "NASA Prediction of Worldwide Energy Resources (POWER)." May 01, 2023. [Online]. Available: https://registry.opendata.aws/nasa-power.

. P. Batima, T. Sugar, N. Dashdeleg, Z. Sanjmyatav, K. Natsagdorj, and N. Batnasan, "The issue of protection of water resources in the valleys of lakes," Proc. Meteorol. Environ. Monit., vol. 14, pp. 127-133, 1989.

. C. Rosenzweig et al., "Assessment of observed changes and responses in natural and managed systems," 2007.

Downloads

Published

2023-12-28

How to Cite

Tseveengerel, B., Munkhtur, P., & Tuyagerel, D. (2023). Changes in the surface area of lakes in the dry steppe: A case study in Buuntsagaan Lake. Mongolian Journal of Geography and Geoecology, 60(44), 46–57. https://doi.org/10.5564/mjgg.v60i44.2923

Issue

Section

Articles