A Benzopyran-based Optical Sensor for Selective Trace Detection of Pd(II): Analytical and Computational Investigation

Authors

DOI:

https://doi.org/10.5564/mjc.v26i54.4283

Keywords:

Pallidium, Chromen-4-one, Spectrophotometric determination, DFT and QTAIM studies, Antioxidant and Antimicrobial

Abstract

3-Hydroxy-2-phenyl-4H-chromen-4-one (HPC), a chromogenic reagent acting as an optical sensor for the metal to be determined and having a sensitive impact on the spectrophotometric Pd (II) determination in the organic phase, has been studied in the present investigation. The ideal conditions for complexation were depicted by the various statistical evidences for instance standard deviation (SD = ± 0.00184), Sandell’s sensitivity (S = 0.0055 μg cm-2), detection limit (LOD = 0.1122 μg mL-1) and regression coefficient (r = 0.9975). The attenuation coefficient of Pd (II)-HPC complex was 1.9159×104 L mol-1 cm-1 calculated at a wavelength range of 417-432 nm of the resulting stable binary yellow complex. Analytical findings support a square planar geometry of the investigated coordination complex. The theoretical studies for instance Density Functional Theory (DFT) have been conducted in order to enhance our comprehension about the complex's molecular geometry and its structural attributes. DFT, has a strong correlation with the analytical findings, proving that the studied complex behaves as a strong bioactive agent. The investigated complex was indeed subjected to antimicrobial and antioxidant studies, results of which reflected that the formed complex has a strong potential to act as a strong antimicrobial and a radical scavenging agent compared to ligand alone. Along with, the formed complex has been employed on commercial samples and has come out with remarkable sensitivity, selectivity, accuracy and precision, under set conditions of the procedure.

Downloads

Download data is not yet available.
Abstract
125
PDF
76

References

1. Mostafa A.M., Hanafy A.I., El-Rahman N. M. A., El-Sayed M.M. (2012). New palladium (II) complexes bearing benzopyran derivative ligands: Synthesis and characterization. Egypt. J. Chem., 55 (1), 57-72.

https://doi.org/10.21608/ejchem.2012.1131

2. Mohmad M., Agnihotri N., Kumar V., Sharma U., Kumar R. et al. (2023) A novel analytical, bioanalytical and theoretical approach to the platinum (II) – 3-hydroxy-2-(4-methoxyphenyl)-4H-chromen-4-one complex. Results Chem., 5, 100767. https://doi.org/10.1016/j.rechem.2023.100767

3. Kaur N., Agnihotri N., Agnihotri R. (2019). 3-Hydroxy-2-[2’-(5’-methylthienyl)]-4-oxo-4H -1-benzopyran for the spectrophotometric determination of tungsten (VI) and palladium (II). Vietnam J. Chem.,57(6), 686–695.

https://doi.org/10.1002/vjch.201900069

4. Dhonchak C., Agnihotri N., Azam M., Javed S., Muthu S., et al. (2023) Theoretical investigations into the spectrophotometrically analyzed niobium (V)-6-chloro-3-hydroxy-7-methyl-2-(2’-thienyl)-4H-chromen-4-one complex. Pol. J. Chem. Technol., 25(3), 63-70. https://doi.org/10.2478/pjct-2023-0026

5. Mohmad M., Agnihotri N., Kumar V., Azam M., Wabaidur S.M., et al. (2022) Radical scavenging capacity, antibacterial activity, and quantum chemical aspects of the spectrophotometrically investigated iridium (III) complex with benzopyran derivative. Front. pharmacol.,13, 945323.

https://doi.org/10.3389/fphar.2022.945323

6. Liu X., Zhang Y., Zou Y., Yan C., Chen J. (2024). Recent advances and outlook of benzopyran derivatives in the discovery of agricultural chemicals. J. Agric. Food Chem.,72(22), 12300-12318.

https://doi.org/10.1021/acs.jafc.3c09244

7. Tiwari A.K., Singh M.V. (2023). Insights into the origin and therapeutic implications of benzopyran and their derivatives. Chemistry Select, 8(20), e202300220. https://doi.org/10.1002/slct.202300220

8. Terahara N. (2015). Flavonoids in Foods: A Review, Nat. Prod. Commun., 10(3), 1934578X1501000.

http://dx.doi.org/10.1177/1934578X150100033

9. Panche A.N., Diwan A. D., Chandra S. R. (2016). Flavonoids: an overview, J. Nutr. Sci., 5, e47.

https://doi.org/10.1017/jns.2016.41

10. Harborne J. B. (1986). Plant flavonoids in biology and medicine. Biochemical, pharmacological, and structure-activity relationships. Proceedings of a symposium. Buffalo, New York, July 22-26, 1985. Prog Clin Biol Res. 1986; 213:1-592. PMID: 3714734.

11. Herić A., Dibranin N., Martić L., Hodžić E., Zahirović A., et al. (2024) Ruthenium-based complexes as anti-tumor agents. J. Health Sci.,14 (2),70-83. http://dx.doi.org/10.17532/jhsci.2024.2693

12. Zahirović A., Fočak M., Fetahović S., Tüzün B., Višnjevac A., et al. (2024) Hydrazone-flavonol based oxidovanadium (V) complexes: Synthesis, characterization and antihyperglycemic activity of chloro derivative in vivo. J. Inorg. Biochem., 258, 112637. https://doi.org/10.1016/j.jinorgbio.2024.112637

13. Lapouge C., Dangleterre L., Cornard J.-P. (2006). Spectroscopic and theoretical studies of the Zn (II) chelation with hydroxyflavones.J. Phys. Chem. A.,110 (45), 12494–12500. https://doi.org/10.1021/jp064362q

14. Radu C., Olteanu A.A., Aramǎ C.C., Uivaroși V. (2024). Hydroxyflavone complexes with biogenic and abiogenic metals. FARMACIA, 72 (4), 751-764. https://doi.org/10.31925/farmacia.2024.4.3

15. Pawlus K., Jarosz T. (2022). Transition metal coordination compounds as novel materials for dye sensitized solar cells. Appl. Sci.,12 (7), 3442. https://doi.org/10.3390/app12073442

16. Chou P.-T., Chi Y. (2007). Phosphorescent dyes for organic light-emitting diodes. Eur. J. Chem.,13(2), 380-395.

https://doi.org/10.1002/chem.200601272

17. Sathish V., Ramdass A., Velayudham M., Lu K.-L., Thanasekaran P., et al. (2017) Development of luminescent sensors based on transition metal complexes for the detection of nitroexplosives. Dalton Trans., 46 (48), 16738-16769. https://doi.org/10.1039/C7DT02790G

18. Cieśla P., Kocot P., Mytych P., Stasicka Z. (2004). Homogeneous photocatalysis by transition metal complexes in the environment. J. Mol. Catal. A Chem., 224 (1-2), 17-33. https://doi.org/10.1016/j.molcata.2004.08.043

19. Ferraro V.,Adam C.R., Vranic A., Bräse S. (2023). Recent advances of transition metal complexes for photopolymerization and 3D printing under visible light. Adv. Funct. Mater., 34 (20), 2302157.

https://doi.org/10.1002/adfm.202302157

20. Alfonso M., Garrido E., Sancenón F., Máñez R.M. (2020). Metal complexes as sensors. Reference module in chemistry. Mol. Sci. Chem. Eng. 139, 26, 8808–8811.

https://doi.org/10.1016/b978-0-12-409547-2.14910-8

21. Chakraborty S., Ravindran V., Nidheesh P. V., Rayalu S. (2020). Optical sensing of copper and its removal by different environmental technologies. Mol. Sci. Chem. Eng., 5(34), 10432–10474.

https://doi.org/10.1002/slct.202002113

22. Žurga N., Moragues T., DeMello A.J. (2023). A re-evaluation of the role of coumarin C460 as a fluorescent Pd (II) sensor. J Photochem Photobiol B, 247,112783. https://doi.org/10.1016/j.jphotobiol.2023.112783

23. Khan D., Shaily. (2023). Coumarin-based fluorescent sensors. Appl. Organomet. Chem., 37(7), e7138.

https://doi.org/10.1002/aoc.7138

24. Jaine J.E., Mucalo M.R. (2018). Rapid determination of rhodium, palladium, and platinum in supported metal catalysts using multivariate analysis of laser induced breakdown spectroscopy data. Spectrochim. Acta, B At. spectrosc.,145, 58-63. https://doi.org/10.1016/j.sab.2018.04.009

25. Tokalıoğlu Ş., Oymak T., Kartal Ş. (2004). Determination of palladium in various samples by atomic absorption spectrometry after preconcentration with dimethylglyoxime on silica gel. Anal. Chim. Acta,511(2), 255–260.

https://doi.org/10.1016/j.aca.2004.02.015

26. Petruci J. F. da S., Cardoso A. A. (2013). A new palladium chelate compound for determination of sulfide. Microchem. J., 106, 368–372.

https://doi.org/10.1016/j.microc.2012.09.009

27. Van der Horst C., Silwana B., Iwuoha E., Somerset V. (2012). Stripping voltametric determination of palladium, platinum and rhodium in freshwater and sediment samples from South African water resources. J Environ Sci Health A, 47 (13), 2084–2093.

https://doi.org/10.1080/10934529.2012.695986

28. Campbell M.H. (1968). Rapid determination of rhodium and palladium using liquid-liquid extraction with tricaprylmonomethylam-monium chloride and flame photometry. Anal. Chem., 40 (1), 6-9.

https://doi.org/10.1021/ac60257a047

29. Oguma K. (2002). Flow-injection simultaneous determination of iron (III) and copper (II) and of iron (III) and palladium (II) based on photochemical reactions of thiocyanato-complexes. Talanta, 58 (6), 1077–1087.

https://doi.org/10.1016/s0039-9140(02)00427-7

30. Kalal H.S., Taghiof M., Hoveidi H., Pakizvand N., Vahidi H., et al. (2013) The Pre-concentration and determination of iridium and palladium in environmental water by imprinted polymer-based method. Int. J. Environ. Sci. Technol.,10, 1091–1102. https://doi.org/10.1007/s13762-013-0308-y

31. Gao R., Zhang N. (2015) ICP-OES Determination of palladium in palladium jewellery alloys using yttrium internal standard. At. Spectrosc., 36 (5), 216-220. http://doi.org/10.46770.AS.2015.05.005

32. Hann S., Rudolph E., Köllensperger G., Reiter C. (n.d.). (2006). Analysis of palladium by high resolution ICP-MS. Palladium Emissions in the Environment, 73–82. https://doi.org/10.1007/3-540-29220-9_5

33. Jabbari A., Barzegar M., Mohammadi M. (2005). Catalytic kinetic spectrophotometric determination of palladium (II) and its application to the determination of traces of propylthiouracil. Indian J. Chem., 44A (6), 1215-1218.

34. Goswami A.K. (2023). Spectrophotometric determination of palladium & platinum: Methods & reagents (1st ed.). CRC Press.

https://doi.org/10.1201/9781003276418

35. Muhammed R.A., Abdullah B. H., Rahman H. S. (2024). Synthesis, cytotoxic, antibacterial, antioxidant activities, DFT, and docking of novel complexes of palladium (II) containing a thiourea derivative and diphosphines. J. Mol. Struct., 1295,136519. https://doi.org/10.1016/j.molstruc.2023.136519

36. Arora T., Garima Km., Kumar V., Javed S., Azam M., et al. (2024) Spectrophotometric, quantum chemical and molecular docking investigations of 4H-1-benzopyran-derived Pd (II) complexes. Bull. Chem. Soc. Ethiop., 38 (5),1311-1327. https://dx.doi.org/10.4314/bcse.v38i5.10

37. Agnihotri N., Mohini, Al-Resayes S. I., Javed S., Azam M., et al. (2024) A spectrophotometric determination and the quantum chemical investigation of Pd (II)-3-hydroxy-2-(4-methoxyphenyl)-4-oxo-4H-1-benzopyran complex. Bull. Chem. Soc. Ethiop., 38 (3),591-603.

https://doi.org/10.4314/bcse.v38i3.4

38. International Critical Tables of Numerical Data, Physics, Chemistry and Technology, National Research Council: Washington, D.C., 1926–1933; Vols. I–VII.

39. Bougossa S., Mhadhbi N., Ahmed A. B., Hamdi M., Elghniji K., et al. (2024) Design of a new palladium (II) halide complex as a bio-active material: synthesis, physico-chemical studies, DFT-computations and evaluation of anti-inflammatory, antioxidant and anti-gastric damage activities. RSC Adv., 14 (25), 17413-17433. https://doi.org/10.1039/D4RA02984D

40. Frisch M.J., Truck G.W., Schlegel H.B., Scuseria G. E., Robb M. A., et al. (2004) Gaussian 03(Revision B.04), Gaussian, Inc., Wallingford CT.

41. Shahangi F., Chermahini A.N., Farrokhpour H., Teimouri A. (2015). Selective complexation of alkaline earth metal ions with nanotubular cyclopeptides: DFT theoretical study. RSC Advances, 5, 2305-2317.

https://doi.org/10.1039/C4RA08302D

42. Armakovic S., Armakovic J.S., Setrajcic J.P., Holodko V. (2014). Aromaticity, response and nonlinear optical properties of sumanene modified with boron and nitrogen atoms. J. Mol. Model., 20, 2538-2551.

https://doi.org/10.1007/s00894-014-2538-4

43. Henkelman G., Arnaldsson A., Jónsson -H. (2006). A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci., 36, 354-360. https://doi.org/10.1016/j.commaatsci.2005.04.010

44. Job P. (1928). Formation and stability of inorganic complexes in solution. Ann. Chim., 9, 113-203.

45. Vosburgh W.C., Cooper G.R. (1941). Complex Ions I. The identification of complex ions in solution by spectrophotometric measurements. J. Am. Chem. Soc.,63 (2), 437-442. https://doi.org/10.1021/ja01847a025

46. Yoe J.H., Jones A.L. (1944). Colorimetric determination of iron with disodium-1,2-dihydroxybenzene-3,5- disulfonate. Indian Chem. Eng., 16 (2), 111-115. https://doi.org/10.1021/i560126a015

47. Allah M.A.A.H., Balakit A.A., Salman H.I., Abdulridha A.A., Sert Y. (2022). New heterocyclic compound as carbon steel corrosion inhibitor in 1 M H2SO4, high efficiency at low concentration. Mat. Sci. Eng., 2034588. https://doi.org/10.1080/01694243.2022.2034588

48. Abdulridha A.A., Allah M.A.A.H., Makki S.Q., Sert Y., Salman H.E., et al. (2020) Corrosion inhibition of carbon steel in 1 M H2SO4 using new azo schiff compound: Electrochemical, gravimetric, adsorption, surface and DFT studies. J. Mol. Liq., 315,113690.

https://doi.org/10.1016/j.molliq.2020.113690

49. Parr R.G., Szentpály L.V., Liu S. (1999). Electrophilicity index. J. Am. Chem. Soc., 121 (9) 1922-1924.

https://doi.org/10.1021/ja983494x

50. Henkelman G., Arnaldsson A., Jónsson -H. (2006). A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci., 36, 354-360. https://doi.org/10.1016/j.commaatsci.2005.04.010

51. Soliman S.M., Barakat A. (2016). Decomposition of intermolecular interactions in the crystal structure of some diacetyl platinum (II) complexes: Combined Hirshfeld, AIM, and NBO analyses. Molecules, 21, 1669.

https://doi.org/10.3390/molecules21121669

52. Ganji M.D., Larijani H.T., hods R.A., M. Mehdizadeh. (2018). First principles and molecular dynamics simulation studies of functionalisation of Au32 golden fullerene with amino acids. Sci Rep, 8, 11400.

https://doi.org/10.1038/s41598-018-29887-5

53. Shahnazari G.H., Ganji M.D. (2021). Understanding structural and molecular properties of complexes of nucleobases and Au13 golden nanocluster by DFT calculations and DFT-MD simulation. Sci Rep, 11, 435.

https://doi.org/10.1038/s41598-020-80161-z

54. Niknam P., Jamehbozorgi S., Rezvani M., Izadkhah V. (2022). Understanding delivery and adsorption of Flutamide drug with ZnONS based on: Dispersion-corrected DFT calculations and MD simulations. Phys. E: Low-Dimens. Syst. Nanostr, 135, 114937.

https://doi.org/10.1016/j.physe.2021.114937

Downloads

Additional Files

Published

2025-11-05

How to Cite

Arora, T., Agnihotri, N., Devi, K., Kumar, R., & Thanh Si, N. (2025). A Benzopyran-based Optical Sensor for Selective Trace Detection of Pd(II): Analytical and Computational Investigation. Mongolian Journal of Chemistry, 26(54). https://doi.org/10.5564/mjc.v26i54.4283

Issue

Section

Articles

Similar Articles

1 2 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.