Monte Carlo and DFT calculations on the corrosion inhibition efficiency of some benzimide molecules
DOI:
https://doi.org/10.5564/mjc.v24i50.2435Keywords:
DFT, Monte Carlo, benzimide, corrosionAbstract
Calculations using density functional theory (DFT) and Monte Carlo methods were performed on 2-methylbenzimidazole, 2-mercaptobenzimidazole, 2-aminobenzimidazole, benzotriazole, and benzimidazole to determine their corrosion inhibition efficiency. The molecular structure was optimized geometrically using DFT calculations at the B3LYP/6– 311 G++(d,p) and b2plypd3/aug-cc-pvdz basis set level in protonated and non-protonated species in gas and water. In this study, HOMO, LUMO, bandgap, ionization energy, electronegativity, hardness, softness, electrophilicity and nucleophilicity, electron transfer, back donation energy and condensed Fukui indices are used to assess a molecule's local reactivity. Theoretical investigations can precisely establish the geometrical dimensions of a molecule and correctly explain the quantum properties of inhibitors. The mechanism of interaction between inhibitors and metal surfaces in a specified molecule is studied using molecular dynamics. The benzimidazole functional groups absorbed energy linearly on metal surfaces, with quantum characteristics determined using density functional theory and an ab initio technique. Importantly, the findings of this conceptual model are consistent with the corrosion inhibition efficiency of earlier experimental investigations.
Downloads
326
References
Wang, N., Xiong, D., Deng, Y., Shi, Y., Wang, K. (2015) Mechanically robust superhydrophobic steel surface with anti-icing, UV-durability, and corrosion resistance properties. ACS Appl. Mater. Interfaces, 7, 6260-6272. https://doi.org/10.1021/acsami.5b00558
Qadr, H.M. (2021) A molecular dynamics study of temperature dependence of the primary state of cascade damage processes. Russ. J. Non-Ferr., 62, 561-567. https://doi.org/10.3103/S1067821221050096
Balamurugan, A., Rajeswari, S., Balossier, G., Rebelo, A.H.S., Ferreira, J.M.F. (2008) Corrosion aspects of metallic implants - An overview. Corros. Mater., 59, 855-869. https://doi.org/10.1002/maco.200804173
Qadr, H.M. (2020) Effect of ion irradiation on the mechanical properties of high and low copper. At. Indones., 46, 47-51. https://doi.org/10.17146/aij.2020.923
Ahamed, M.R., Narren, S.F., Sadiq, A.S. (2013) Synthesis of 2-mercaptobenzimidazole and some of its derivatives. ANJS., 16, 77-83. https://doi.org/10.22401/JNUS.16.2.11
Liu, L., Lu, S., Wu, Y.Q., Xie, J.Y., Xing, J. (2020) Corrosion inhibition behavior of four benzimidazole derivatives and benzotriazole on copper surface. Anti-Corros. Methods Mater., 67, 565-574. https://doi.org/10.1108/ACMM-12-2019-2235
Altaf, M., Yamin, N., Muhammad, G., Raza, M.A., Shahid, M., et al. (2021) Electroanalytical techniques for the remediation of heavy metals from wastewater. Water Pollution and Remediation: Heavy Metals, 471-511. https://doi.org/10.1007/978-3-030-52421-0_14
Gupta, V.K., Ali, I. (2013) Environmental water: advances in treatment, remediation and recycling, 2nd Ed., Elsevier, Oxford, UK. https://doi.org/10.1016/B978-0-444-59399-3.00008-8
Qadr, H.M. (2021) Pressure effects on stopping power of alpha particles in argon gas. Phys. Part. Nucl., 18, 185-189. https://doi.org/10.1134/S1547477121020151
Tan, Y., Leonhard, M., Moser, D., Ma, S., Schneider-Stickler, B. (2019) Antibiofilm efficacy of curcumin in combination with 2-aminobenzimidazole against single-and mixed-species biofilms of Candida albicans and Staphylococcus aureus. Colloids Surf. B: Biointerfaces., 174, 28-34. https://doi.org/10.1016/j.colsurfb.2018.10.079
Song, D., Ma, S. (2016) Recent development of benzimidazole‐containing antibacterial agents. Chem.Med.Chem., 11, 646-659. https://doi.org/10.1002/cmdc.201600041
Briguglio, I., Piras, S., Corona, P., Gavini, E., Nieddu, M., et al. (2015) Benzotriazole: An overview on its versatile biological behavior. Eur. J. Med. Chem., 97, 612-648. https://doi.org/10.1016/j.ejmech.2014.09.089
Pustuła, K., Płonka, A., Makowski, M. (2018) Thermal decomposition of oxetan-2-one molecule in the light of DFT and CASPT2 modelling. Comput. Theor. Chem., 1140, 98-103. https://doi.org/10.1016/j.comptc.2018.07.020
Frisch, A. (2009) Gaussian 09W Reference. Wallingford, USA, 25 p, 470.
Cammi, R., Mennucci, B. (1999) Linear response theory for the polarizable continuum model. J. Chem. Phys., 110, 9877-9886. https://doi.org/10.1063/1.478861
Hussein, Y.T., Azeez, Y.H. (2021) DFT analysis and in silico exploration of drug-likeness, toxicity prediction, bioactivity score, and chemical reactivity properties of the urolithins. J. Biomol. Struct. Dyn., 1-10. https://doi.org/10.1080/07391102.2021.2017350
Qadr, H.M., Mamand, D.M. (2021) Molecular structure and density functional theory investigation corrosion inhibitors of some oxadiazoles. J. Bio- Tribo-Corros., 7, 140. https://doi.org/10.1007/s40735-021-00566-9
Mamand, D.M., Rasul, H.H., Omer, P.K., Qadr, H.M. (2022) Theoretical and experimental investigation on ADT organic semiconductor in different solvents. Condens. Matter Interphases., 24, 227-242. https://doi.org/10.17308/kcmf.2022.24/9263
Outirite, M., Lagrenée, M., Lebrini, M., Traisnel, M., Jama, C., et al. (2010) ac impedance, X-ray photoelectron spectroscopy and density functional theory studies of 3, 5-bis (n-pyridyl)-1, 2, 4-oxadiazoles as efficient corrosion inhibitors for carbon steel surface in hydrochloric acid solution. Electrochim. Acta., 55, 1670-1681. https://doi.org/10.1016/j.electacta.2009.10.048
Mamand, D.M., Anwer, T.M.K., Qadr, H.M. (2022) Theoretical investigation on corrosion inhibition effect of oxadiazole: DFT calculations. Oxid. Commun., 45, 600-627.
Ju, H., Ding, L., Sun, C., Chen, J.-j. (2015) Quantum chemical study on the corrosion inhibition of some oxadiazoles. Adv. Mater. Sci. Eng., 2015. https://doi.org/10.1155/2015/519606
Demissie, E.G., Kassa, S.B., Woyessa, G.W. (2014) Quantum chemical study on corrosion inhibition efficiency of 4-amino-5-mercapto-1, 2, 4-triazole derivatives for copper in HCl solution. Int. J. Sci. Eng. Res., 5, 304. https://doi.org/10.14299/ijser.2014.06.001
Mamand, D. (2019) Determination the band gap energy of poly benzimidazo-benzophenanthroline and comparison between HF and DFT for three different basis sets. J. Phys. Chem. Funct. Mater., 2, 32-36.
Zheng, X., Zhang, S., Gong, M., Li, W. (2014) Experimental and theoretical study on the corrosion inhibition of mild steel by 1-octyl-3-methylimidazolium L-prolinate in sulfuric acid solution. Ind. Eng. Chem. Res., 53, 16349-16358. https://doi.org/10.1021/ie502578q
Djenane, M., Chafaa, S., Chafai, N., Kerkour, R., Hellal, A. (2019) Synthesis, spectral properties and corrosion inhibition efficiency of new ethyl hydrogen [(methoxyphenyl)(methylamino) methyl] phosphonate derivatives: Experimental and theoretical investigation. J. Mol. Struct., 1175, 398-413. https://doi.org/10.1016/j.molstruc.2018.07.087
Chen, X., Chen, Y., Cui, J., Li, Y., Liang, Y., et al. (2021) Molecular dynamics simulation and DFT calculation of “green” scale and corrosion inhibitor. Comput. Mater. Sci., 188, 110229. https://doi.org/10.1016/j.commatsci.2020.110229
Singh, P., Srivastava, V., Quraishi, M.A. (2016) Novel quinoline derivatives as green corrosion inhibitors for mild steel in acidic medium: electrochemical, SEM, AFM, and XPS studies. J. Mol. Liq., 216, 164-173. https://doi.org/10.1016/j.molliq.2015.12.086
Kaya, S., Kaya, C., Islam, N. (2016) The nucleophilicity equalization principle and new algorithms for the evaluation of molecular nucleophilicity. Comput. Theor. Chem., 1080, 72-78. https://doi.org/10.1016/j.comptc.2016.02.006
Khaled, K.F. (2011) Experimental and computational investigations of corrosion and corrosion inhibition of iron in acid solutions. J. Appl. Electrochem., 41, 277-287. https://doi.org/10.1007/s10800-010-0235-2
Goulart, C.M., Esteves-Souza, A., Martinez-Huitle, C.A., Rodrigues, C.J.F., Maciel, M.A.M., et al. (2013) Experimental and theoretical evaluation of semicarbazones and thiosemicarbazones as organic corrosion inhibitors. Corros. Sci., 67, 281-291. https://doi.org/10.1016/j.corsci.2012.10.029
Qadr, H.M., Mamand, D. (2022) A Review on DPA for computing radiation damage simulation. J. Phys. Chem. Funct. Mater., 5, 30-36. https://doi.org/10.54565/jphcfum.1027393
Mamand, D. (2019) Theoretical calculations and spectroscopic analysis of gaussian computational examination-NMR, FTIR, UV-Visible, MEP on 2, 4, 6-Nitrophenol. J. Phys. Chem. Funct. Mater., 2, 77-86.
El Faydy, M., Galai, M., El Assyry, A., Tazouti, A., Touir, R., et al. (2016) Experimental investigation on the corrosion inhibition of carbon steel by 5-(chloromethyl)-8-quinolinol hydrochloride in hydrochloric acid solution. J. Mol. Liq., 219, 396-404. https://doi.org/10.1016/j.molliq.2016.03.056
Hadisaputra, S., Purwoko, A.A., Savalas, L.R.T., Prasetyo, N., Yuanita, E., et al. (2020) Quantum chemical and Monte Carlo simulation studies on inhibition performance of caffeine and its derivatives against corrosion of copper. Coatings., 10, 1086. https://doi.org/10.3390/coatings10111086
Erdoğan, Ş., Safi, Z.S., Kaya, S., Işın, D.Ö., Guo, L., et al. (2017) A computational study on corrosion inhibition performances of novel quinoline derivatives against the corrosion of iron. J. Mol. Struct., 1134, 751-761. https://doi.org/10.1016/j.molstruc.2017.01.037
Frenkel, D., Smit, B., Ratner, M.A. (1996) Understanding molecular simulation: From algorithms to applications, Academic press San Diego.
Mamand, D.M., Qadr, H.M. (2021) Comprehensive spectroscopic and optoelectronic properties of bbl organic semiconductor. Prot. Met. Phys. Chem. Surf., 57, 943-953. https://doi.org/10.1134/S207020512105018X
Guo, L., Zhu, S., Zhang, S. (2015) Experimental and theoretical studies of benzalkonium chloride as an inhibitor for carbon steel corrosion in sulfuric acid. J. Ind. Eng. Chem., 24, 174-180. https://doi.org/10.1016/j.jiec.2014.09.026
Mamand, D.M., Anwer, T.M.K., Qadr, H.M., Mussa, C.H. (2022) Investigation of spectroscopic and optoelectronic properties of phthalocyanine molecules. Russ. J. Gen. Chem., 92, 1827-1838. https://doi.org/10.1134/S1070363222090249
Mamand, D.M., Qadr, H.M. (2022) Density functional theory and computational simulation of the molecular structure on corrosion of carbon steel in acidic media of some amino acids. Russ. J. Phys. Chem. A., 96, 2155-2165. https://doi.org/10.1134/S0036024422100193
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Dyari Mustafa Mamand, Yousif Hussein Azeez, Hiwa Mohammad Qadr
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright on any research article in the Mongolian Journal of Chemistry is retained by the author(s).
The authors grant the Mongolian Journal of Chemistry a license to publish the article and identify itself as the original publisher.
Articles in the Mongolian Journal of Chemistry are Open Access articles published under a Creative Commons Attribution 4.0 International License CC BY.
This license permits use, distribution and reproduction in any medium, provided the original work is properly cited.