Effects of environmental factors on leaf litter decomposition of three species of Stipa

Authors

  • Tugsbayar Batzorig Botanical Garden, and Research Institute, Mongolian Academy of Sciences, Ulaanbaatar 13330, Mongolia
  • Erdenebileg Enkhmaa Botanical Garden, and Research Institute, Mongolian Academy of Sciences, Ulaanbaatar 13330, Mongolia https://orcid.org/0000-0003-1345-5058
  • Indree Tuvshintogtokh Botanical Garden, and Research Institute, Mongolian Academy of Sciences, Ulaanbaatar 13330, Mongolia

DOI:

https://doi.org/10.5564/mjb.v5i31.3264

Keywords:

Stipa, leaf litter decomposition, meadow steppe, typical steppe, desert steppe, light-exposed, shaded, leaf traits

Abstract

Plant litter decomposition plays an important role in carbon and nutrient cycling in terrestrial ecosystems. The influence of abiotic factors on the decomposition of plants in humid ecosystems is higher due to the favorable moisture conditions and the abundance of decomposer microorganisms. However, in arid and semi-arid ecosystems, plant litter decomposition is influenced by both abiotic and biotic factors, depending on sparse plant cover, high soil temperature, and low rainfall. The effects of environmental factors on leaf litter decomposition in arid and semi-arid Mongolian steppes are unclear. A field experiment was carried out in meadow steppe, typical steppe, and desert steppes of Mongolia to investigate the effect of environmental factors such as light-expose, shade, and climate conditions on three species of Stipa (Stipa baicalensis, Stipa grandis, Stipa gobica) representing different litter qualities over a two year of incubation (6, 12, 18 and 24 months). The results of the study revealed that the leaf litter decomposition rate differed among the three species, in which Stipa gobica had a relatively high leaf litter decomposition rate. Also, the rate of leaf decomposition of Stipa gobica was directly and indirectly correlated with leaf traits, while it was positively correlated to climatic conditions (r=0.55). However, for Stipa baicalensis, was negatively correlated to leaf traits (r=-0.56 – -0.63) and on the contrary, Stipa grandis was strongly positively correlated to leaf traits (r=0.68-0.89). Seasonality has an effect on the leaf litter decomposition, with the highest decomposition rate occurring from April to October, while the decomposition rate was very low from November to March.

Гурван зүйл хялганын навчны задралд хүрээлэн буй орчны хүчин зүйлсийн үзүүлэх нөлөө

Хураангуй. Ургамлын задрал нь хуурай газрын экосистем дэх нүүрстөрөгч болон шим тэжээлийн бодисын эргэлтэд чухал үүрэг гүйцэтгэдэг. Чийглэг экосистемийн ургамлын задралд абиотик хүчин зүйлийн нөлөө их байдаг нь чийгийн таатай нөхцөл, задлагч микрорганизм их байдагтай холбоотой. Харин хуурай болон хагас хуурай экосистемийн хувьд ургамлын бүрхэвч сийрэг, хөрсний температур өндөр, хур тунадасны хэмжээ бага байдгаас хамаарч ургамлын задралд абиоток, биотик хүчин зүйл нөлөөлдөг. Хуурай болон хагас хуурай Монгол орны нугажуу, хуурай болон цөлөрхөг хээрийн ургамлын навчны задралд хүрээлэн буй орчны хүчин зүйлс хэрхэн нөлөөлж байгаа нь тодорхойгүй хэвээр байна. Тиймээс энэхүү судалгааны ажлаар нугажуу хээр, хуурай хээр болон цөлөрхөг хээрийн зонхилогч үетэн ургамал болох гурван зүйл хялганын (Stipa baicalensis, Stipa grandis, Stipa gobica) навчны задралд хүрээлэн буй орчны хүчин зүйлс болон ургамлын шинж чанар хэрхэн нөлөөлж буй болон бүлгэмдэл хоорондын ялгааг илрүүлэх зорилготой ажиллалаа. Бид туршилтыг гэрэлтэй болон сүүдэрлэсэн хоёр хувилбартай 2 жилийн хугацаанд 4 удаагийн дээж хураалттай (6, 12, 18 болон 24 сар) хийж гүйцэтгэсэн. Судалгааны үр дүнд ургамлын навчны задрал нь хялганын гурван зүйл хооронд ялгаатай бөгөөд үүнээс Stipa gobica-ийн навчны задралын хурд харьцангуй өндөр болохыг тогтоов. Мөн Stipa gobica зүйлийн навчны задралын хурд нь навчны шинж чанараас эерэг болон сөрөг хамаарч байсан бол цаг уурын үзүүлэлтүүдтэй эерэг (r=0.55) хамааралтай байсан. Харин Stipa baicalensis зүйлийн хувьд навчны шинж чанараас сөрөг (r=-0.56 – -0.63) хамааралтай, Stipa grandis зүйлийн тухайд навчны шинж чанараас эерэг хүчтэй хамааралтай байна (r=0.68-0.89). Ургамлын навчны задралд улирлын байдал нөлөөтэй бөгөөд 4-р сараас 10-р сарын хооронд задралын хэмжээ хамгийн өндөр байсан бол 11-р сараас 3-р сар хүртэл задралын хурд маш бага байв. Үүнээс харахад нугажуу хээр болон хуурай хээрийн ургамлын задрал тухайн ургамлын шинж чанараас хамаардаг бол цөлөрхөг хээрийн ургамлын задралд хүрээлэн буй орчны хүчин зүйлс чухал нөлөөтэй байна.

Түлхүүр үгс: Хялгана, навчны задрал, нарны гэрэл, сүүдэр, навчны шинж чанар, нугажуу хээр, хуурай хээр, цөлөрхөг хээр

Downloads

Download data is not yet available.
Abstract
105
PDF
114

References

Austin AT., and Vivanco L. 2006. Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation. Nature. 442(7102): 555–558. https://doi.org/10.1038/nature05038

Berg B., & Mcclaugherty C. 2008. Decomposition of Fine Root and Woody Litter. Plant Litter. https://doi.org/10.1007/978-3-540-74923-3

Bhatt SC., Sarat Babu GV., & Pandeya SC. 1985. Leaf-litter decomposition in arid to semi-arid climatic conditions. Proceedings / Indian Academy of Sciences. 95(6): 409–415. https://doi.org/10.1007/BF03053679

Brandt LA., King JY., Hobbie SE., Milchunas DG. 2010. The Role of Photodegradation in Surface Litter Decomposition Across a Grassland Ecosystem Precipitation Gradient. Ecosystems. 13(5): 765-781.https://doi.org/10.1007/s10021-010-9353-2

Chambers JM., Hastie TJ (eds.) 1992. Statistical Models in S. Chapman & Hall, London

Cornelissen JHC., Lavorel S., Garnier E., Diaz S., Buchmann N., et al. 2003. A handbook of protocols for standardized and easy measurement of plant functional traits worldwide. Australian Journal of Botany. 51: 335-380. https://doi.org/10.1071/BT02124

Cotrufo MF., Ngao J., Marzaioli F., & Piermatteo D. 2010. Inter-comparison of methods for quantifying above-ground leaf litter decomposition rates. Plant and Soil. 334(1): 365–376. https://doi.org/10.1007/s11104-010-0388-0

Couteaux MM., Bottner P., & Berg B. 1995. Litter decomposition climate and litter quality. Trends in Ecology and Evolution. 10(2): 63–66. https://doi.org/10.1016/S0169-5347(00)88978-8

Erdenebileg E., Ye XH., Wang CW., Huang ZY., Liu GF., Cornelissen JHC. 2018. Positive and negative effects of UV irradiance explain the interaction of litter position and UV exposure on litter decomposition and nutrient dynamics in a semi-arid dune ecosystem. Soil Biology & Biochemistry. 124: 245–254. https://doi.org/10.1016/j.soilbio.2018.06.013

Erdenebileg, E, Wang, C, Ye, X, et al. 2020. Multiple abiotic and biotic drivers of long-term wood decomposition within and among species in the semi-arid inland dunes: A dual role for stem diameter. Functional Ecology. 34: 1466–1478. https://doi.org/10.1111/1365-2435.13559

Henry H a L., Brizgys K., & Field CB. 2008. Litter decomposition in a California annual grassland: Interactions between photodegradation and litter layer thickness. Ecosystems. 11(4): 545–554. https://doi.org/10.1007/s10021-008-9141-4

Hooper DU., Vitousek PM. 1998. Effects of plant composition and diversity on nutrient cycling. Ecologycal Monographs. 68(1): 121–149. https://doi.org/10.1890/0012-9615(1998)068

Kalburtji KL., Mamolos AP., & Kostopoulou S. 1997. Nutrient release from decomposing Lotus corniculatus residues in relation to soil pH and nitrogen levels. Agriculture, Ecosystems and Environment. 65(2): 107–112. https://doi.org/10.1016/S0167-8809(97)00064-9

Kalburtji KL., Mosjidis JA., Mamolos AP. 1999. Litter dynamics of low and high tannin sericea lespedeza plants under field conditions. Plant Soil. 208: 271–281 https://doi.org/10.1023/A:1004577624435

Kassambara A. 2020. https://github.com/kassambara/ggpubr

King JY., Brandt LA., & Adair EC. 2012. Shedding light on plant litter decomposition: Advances, implications and new directions in understanding the role of photodegradation. Biogeochemistry. 111(1–3): 57–81. https://doi.org/10.1007/s10533-012-9737-9

Koukoura Z., Mamolos AP., & Kalburtji KL. 2003. Decomposition of dominant plant species litter in a semi-arid grassland. Applied Soil Ecology. 23(1): 13–23. https://doi.org/10.1016/S0929-1393(03)00006-4

Lin Y., King JY. 2014. Effects of UV exposure and litter position on decomposition in a California grassland. Ecosystems 17, 158–168. https://doi.org/10.1007/s10021-013-9712-x

Liu H., Mi Zh., Lin L., Wang Y., Zhang Zh., Zhang F., Wang H., Liu L., Zhu B., Cao G., Zhao H., Sanders NJ., Classen AT., Reich PB., He JSh. 2018. Shifting plant species composition in response to climate change stabilizes grassland primary production. Proceeding of the National Academy of Sciences. 115(16): 4051–4056. https://doi.org/10.1073/pnas.1700299114

Liu GF., Cornwell WK., Pan X., Ye D., Liu F., Huang Z., Dong M., Cornelissen JHC. 2015. Decomposition of 51 semidesert species from wide-ranging phylogeny is faster in standing and sand-buried than in surface leaf litters: implications for carbon and nutrient dynamics. Plant and Soil. 396: 175–187. https://doi.org/10.1007/s11104-015-2595-1

María T, Domínguez, Cristina Aponte, Ignacio M, Pérez-Ramos, Luis V. García, Rafael Villar, Teodoro Marañón. 2012. Relationships between leaf morphological traits, nutrient concentrations and isotopic signatures for Mediterranean woody plant species and communities. Plant Soil. 357: 407–424. https://doi.org/10.1007/s11104-012-1214-7

Meentemeyer V. 1978. Macroclimate the Lignin Control of Litter Decomposition Rates. Ecology. 59(3): 465. https://doi.org/10.1890/08-2294.1

Moorhead D., & Sinsabaugh R. 2006. A Theoretical Model of Litter Decay and Microbial Interaction. Ecological Monographs. 76: 151–174. https://doi.org/10.1890/0012-9615(2006)076[0151:

Moretto AS., Distel RA., & Didoné NG. 2001. Decomposition and nutrient dynamic of leaf litter and roots from palatable and unpalatable grasses in a semi-arid grassland. Applied Soil Ecology, 18(1): 31–37. https://doi.org/10.1016/S0929-1393(01)00151-2

Olsen JS., 1963. Energy storage and the balance of producers and decomposers in ecological systems. Ecology. 44: 322–331. https://doi.org/10.2307/1932179

Pancotto V., Sala OE., Cabello M., Lopez NI., Robsons TM., Ballare CL., & Caldwell MM. 2003. Solar UV-B decreases descomposition in herbaceous plant litter in Tierra del Fuego, Argentina: potential role of an altered descomposer community. Global Change Biology. 9PDF, 1465–1474. https://doi.org/10.1046/j.1365-2486.2003.00667.x

Parton W., Silver WL., Burke IC., Grassens L., Harmon ME., Currie WS., King JY., Adair EC., Brandt L. a, Hart SC., & Fasth B. 2007. Global-scale similarities in nitrogen release patterns during long-term decomposition. Science. 315(5810): 361–364. https://doi.org/10.1126/science.1134853

Powers JS., Montgomery R. a., Adair EC., Brearley FQ., Dewalt SJ., Castanho CT., Chave J., Deinert E., Ganzhorn JU., Gilbert ME., González-Iturbe JA., Bunyavejchewin S., Grau HR., Harms KE., Hiremath A., Iriarte-Vivar S., Manzane E., De Oliveira A. a., Poorter L., … Lerdau M. T. 2009. Decomposition in tropical forests: A pan-tropical study of the effects of litter type, litter placement and mesofaunal exclusion across a precipitation gradient. Journal of Ecology. 97(4):801–811. https://doi.org/10.1111/j.1365-2745.2009.01515.x

R Core Team. 2022. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.R-project.org/

Ross DJ., Tate KR., Newton PCD., Clark H. 2002. Decompo- sability of C3 and C4 grass litter sampled under different concentrations of atmospheric carbon dioxide at natural CO2 spring. Plant Soil. 240: 275–286. https://doi.org/10.1023/A:1015779431271

Smyth CE., Titus B., Trofymow JA., Moore TR., Preston CM., Prescott CE., & the CIDET Working Group. 2016. Patterns of carbon, nitrogen and phosphorus dynamics in decomposing wood blocks in Canadian forests. Plant and Soil. 409:459–477. https://doi.org/10.1007/s1110 4- 016-2972-4

Swift MJ., Heal OW., Anderson JM. 1979. Decomposition in Terrestrial Ecosystems, Blackwell Scientific Publications, Oxford. https://doi.org/10.1525/9780520407114

Vile D., Garnier E., Shipley B., Laurent G., Navas ML., Roumet C., Lavorel S., Díaz S., Hodgson JG., Lloret F., Midgley GF., Poorter H., Rutherford MC., Wilson PJ., Wright IJ. 2005. Specific leaf area and dry matter content estimate thickness in laminar leaves. Annals of Botany. 96(6): 1129-1136. https://doi.org/10.1093/aob/mci264

Vitousek PM., Turner DR., Parton WJ., Sanford RL. 1994. Litter decomposition on the Mauna Loa environmental matrix, Hawaii: patterns, mechanisms, and models. Ecology. 75: 418– 429. https://doi.org/10.2307/1939545

Wang J., Liu L., Wang X., Chen Y., 2015. The interaction between abiotic photo- degradation and microbial decomposition under ultraviolet radiation. Global Change Biology. 21:2095–2104. https://doi.org/10.1111/gcb.12812

Downloads

Published

2023-11-16

How to Cite

Batzorig, T., Enkhmaa, E., & Tuvshintogtokh, I. (2023). Effects of environmental factors on leaf litter decomposition of three species of Stipa. Mongolian Journal of Botany, 5(31), 51–65. https://doi.org/10.5564/mjb.v5i31.3264

Issue

Section

Articles