Geochemistry of mafic extrusive lavas in the Bayankhongor Ophiolite, Mongolia
DOI:
https://doi.org/10.5564/mgs.v30i61.4029Keywords:
Pillow lava, EMORB, OIBAbstract
This study presents new geochemical data on pillow lavas from the Bayankhongor Ophiolite in western Mongolia, revealing compositions that range from sub-alkaline to alkaline basalts. While most of these basalts are tholeiitic, some show transitional geochemical variations. Except for one sample resembling normal mid-ocean ridge basalt, all others are enriched in light rare earth elements and closely resemble enriched mid-ocean ridge basalt and ocean island basalt. The presence of high-field strength elements such as Th, Ta, Nb, Zr, Hf, and Ti indicates a mantle-derived origin. Tectonic discrimination diagrams demonstrate a transition between enriched mid-ocean ridge basalt and within-plate basalt, characteristic of mid-ocean ridges. The samples are categorized into three groups based on the LREE variation: low- normal mid-ocean ridge basalt, high- enriched mid-ocean ridge basalt, and ocean island basalt, suggesting advanced partial melting of the mantle and a mixing of mid-ocean ridge basalt with ocean island basalt. The Bayankhongor Ophiolite is widely recognized as a subduction-unrelated ophiolite and represents one of the largest Neoproterozoic oceanic rift basins in the Central Asian Orogenic Belt. Consequently, subduction-unrelated tectonic models are often favored for the Bayankhongor Ophiolite, which somewhat aligns with our findings. However, recent studies highlight the importance of subduction-related models and timing. Our model aims to integrate both aspects.
Downloads
246
References
Badarch, G., Cunningham, W.D., Windley, B.F. 2002. A new terrane subdivision for Mongolia: Implications for the Phanerozoic crustal growth of Central Asia. Journal of Asian Earth Science, vol. 21(1), p. 87-110. https://doi.org/10.1016/S1367-9120(02)00017-2
Boynton, W.V. 1984. Geochemistry of rare earth elements: Meteorite studies. In: Henderson, P. (Ed), Rare Earth Element Geochemistry, Elsevier, New York, vol. 63, p. 114. https://doi.org/10.1016/B978-0-444-42148-7.50008-3
Buchan, C., Cunningham, D., Windley, B.F., Tomurhuu, D. 2001. Stuctural and lithological characteristics of the Bayankhongor ophiolite zone, Central Mongolia. Journal of the Geological Society, vol. 158, p. 445-460. https://doi.org/10.1144/jgs.158.3.445
Buchan, C., Pfänder, J., Kröner, A., Brewer, T.S., Tomurtogoo, O., Tomurhuu, D., Cunningham, D., Windley, B.F. 2002. Timing of accretion and collisional deformation in the Central Asian Orogenic Belt: Implications of granite geochronology in the Bayankhongor Ophiolite Zone. Chemical Geology, vol. 192(1-2), p. 23-45. https://doi.org/10.1016/S0009-2541(02)00138-9
Buddington, A.F.1926. Submarine Pillow Lavas of South-Eastern Alaska. The Journal of Geology, vol. 34(8) , p. 824-828. https://doi.org/10.1086/623369
Cabanis, B., Lecolle, M. 1989. The La/10-Y/15-Nb/8 diagram: A tool for distinguishing volcanic series and discovering crustal mixing and/or contamination: Comptes Rendus de l’Academie des Sciences, serie 2. Science de la Terre, vol. 309(20), p. 20. (in French)
De Boer, J., Schilling, J.G., Krause, D.C. 1969. Magnetic Polarity of Pillow Basalts from Reykjanes Ridge. Science, vol. 166(3908), p. 996-998. https://doi.org/10.1126/science.166.3908.996
Demoux, A., Kröner, A., Badarch, G., Jian, P., Tomurhuu, D., Wingate, M.T.D. 2009. Zircon Ages from the Baydrag Block and the Bayankhongor Ophiolite Zone: Time Constraints on Late Neoproterozoic to Cambrian Subduction- and Accretion-Related Magmatism in Central Mongolia. The Journal of Geology, vol. 117(4), p. 377-397. https://doi.org/10.1086/598947
Dilek, Y., Furnes, H. 2014. Ophiolites and Their Origins. Elements, vol. 10(2), p. 93-100. https://doi.org/10.2113/gselements.10.2.93
Furnes, H., Safonova, I. 2019. Ophiolites of the Central Asian Orogenic Belt: Geochemical and petrological characterization and tectonic settings. Geoscience Frontiers, vol. 10(4), p. 1255-1284. https://doi.org/10.1016/j.gsf.2018.12.007
Griffiths, R.W., Fink, J.H. 1992. The morphology of lava flows in planetary environments: predictions from analog experiments. Journal of Geophysical Research: Solid Earth, vol. 97(B13), p. 19739-19748. https://doi.org/10.1029/92jb01953
Janoušek, V., Farrow, C.M., Erban, V. 2006. Interpretation of whole-rock geochemical data in igneous geochemistry: introducing Geochemical Data Toolkit (GCDkit). Journal of Petrology, vol. 47(6), p. 1255-1259. https://doi.org/10.1093/petrology/egl013
Jahn, B.M., Capdevila, R., Liu, D., Vernon, A., Badarch, G. 2004. Sources of Phanerozoic granitoids in the transect Bayanhongor-Ulaan Baatar, Mongolia: geochemical and Nd isotopic evidence, and implications for Phanerozoic crustal growth. Journal of Asian Earth Sciences, vol. 23(5), p. 629-653. https://doi.org/10.1016/S1367-9120(03)00125-1
Jian, P., Kröner, A., Windley, B.F., Shi, Y., Zhang, F., Miao, L., Tomurhuu, D., Zhang, W., Liu, D. 2010. Zircon ages of the Bayankhongor ophiolite mélange and associated rocks: Time constraints on Neoproterozoic to Cambrian accretionary and collisional orogenesis in Central Mongolia. Precambrian Research, vol. 177(1-2), p. 162-180. https://doi.org/10.1016/j.precamres.2009.11.009
Jian, P., Kröner, A., Jahn, B.M., Windley, B.F., Shi, Y., Zhang, W., Zhang, F., Miao, L., Tomurhuu, D., Liu, D. 2014. Zircon dating of Neoproterozoic and Cambrian ophiolites in West Mongolia and implications for the timing of orogenic processes in the central part of the Central Asian Orogenic Belt. Earth-Science Reviews, vol. 133, p. 62-93. https://doi.org/10.1016/j.earscirev.2014.02.006
Kepezhinskas, P.K., Kepezhinskas, K.B., Pukhtel, I.S. 1991. Lower Paleozoic oceanic crust in Mongolian Caledonides: Sm-Nd isotope and trace element data. Geophysical Research Letters, vol. 18(7), p. 1301-1304. https://doi.org/10.1029/91GL01643
Kovach, V.P., Ping, J., Yarmolyuk, V.V., Kozakov, I.K., Liu, D., Terent’eva, L.B., Lebedev, V.I., Kovalenko, V.I. 2005. Magmatism and geodynamics of early stage of the Paleo-Asian Ocean formation: Geochronological and geochemical data on the ophiolites of the Bayan-Khongor zone. Doklady Akademii Nauk-Rossijskaya Akademiya Nauk, vol. 404, p. 229-234. (in Russian)
Parfenov, L.M., Berzin, N.A., Khanchuk, A.I., Badarch, G., Belichenko, V.G., Bulgatov, A.N., Dril, S.I., Kirillova, G.L., Kuzmin, M.I., Nokleberg, W., Prokopiev, A.V., Timofeev, V.F., Tomurtogoo, O., Yan, H. 2003. A model for the formation of orogenic belts of central and northeast Asia. Tikhookeanskaya geologiya, vol. 22, p. 7-41. (in Russian)
Pearce, J.A. 1996. A user’s guide to basalt discrimination diagrams. In: D.A. Wyman (Ed), Trace Element Geochemistry of Volcanic Rocks: Applications for Massive Sulphide Exploration. Geological Association of Canada, Short Course Notes, vol. 12, p. 79-113.
Pearce, J.A., Stern, R.J. 2006. Origin of back-arc basin magmas: Trace element and isotope perspectives. In: Christie, D.M., Fisher, C.R., Lee, S.-M., Givens, S. (Eds), Back-Arc Spreading Systems: Geological, biological, chemical, and physical interactions, vol. 166, p. 63-86. https://doi.org/10.1029/166GM06
Pearce, J.A. 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos, vol. 100(1-4), p. 14-48. https://doi.org/10.1016/j.lithos.2007.06.016
Pearce, J.A. 2014. Immobile Element Fingerprinting of Ophiolites, Elements, vol. 10(2), p. 101-108. https://doi.org/10.2113/gselements.10.2.101
Ross, P.S., Bédard, J.H. 2009. Magmatic affinity of modern and ancient subalkaline volcanic rocks determined from trace-element discriminant diagrams. Canadian Journal of Earth Sciences, vol. 46(11), p. 823-839. https://doi.org/10.1139/E09-054
Saccani, E., Dilek, Y., Marroni, M., Pandolfi, L. 2015. Continental margin ophiolites of Neotethys: remnants of ancient ocean-continent transition zone (OCTZ) lithosphere and their geochemistry, mantle sources and melt evolution patterns. Episodes vol. 38(4), p. 230-249. https://doi.org/10.18814/epiiugs/2015/v38i4/82418
Şengör, A.M.C., Sunal, G., Natal’in, B.A., van der Voo, R. 2022. The Altaids: A review of twenty-five years of knowledge accumulation. Earth-Science Reviews, vol. 228, p. 104013. https://doi.org/10.1016/j.earscirev.2022.104013
Şengör, A.M.C., Natal’In, B.A., Burtman, V.S. 1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature, vol. 364, p. 299-307. https://doi.org/10.1038/364299a0
Sukhbaatar, T., Schulmann, K., Janoušek, V., Soejono, I., Lexa, O., Míková, J., Hora, J.M., Song, D., Xiao, W., Poujol, M., Onongoo, T., Dashdorjgochoo, O., Zeng, H. 2024. Magmatic and sedimentological arguments for an Ediacaran active margin in the Bayankhongor Zone in western Mongolia, Central Asian Orogenic Belt. Gondwana Research, vol. 134, p. 385-409. https://doi.org/10.1016/j.gr.2024.07.017
Sun, S.S., McDonough, W.F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders, A.D., Norry, M. (Eds), Magmatism in the Ocean Basins. Geological Society, London, Special Publications, vol. 42, p. 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
Shervais, J.W. 1982. Ti-V plots and the petrogenesis of modern and ophiolitic lavas. Earth and Planetary Science Letters, vol. 59(1), p. 101-118. https://doi.org/10.1016/0012-821X(82)90120-0
Terent’eva, L.B., Kovach, V.P., Yarmolyuk, V.V., Kovalenko, V.I., Kozlovsky, A.M. 2008. Composition, sources, and geodynamics of rock formation in the late riphean bayankhongor ophiolite zone: Characteristics of early stages in the evolution of the paleo-asian ocean. Doklady Earth Sciences, vol. 423, p. 1462-1466. https://doi.org/10.1134/S1028334X08090316
Terent’eva, L.B., Kozakov, I.K., Yarmolyuk, V.V., Anisimova, I.V., Kovach, V.P., Kozlovskii, A.M., Kudryashova, E.A., Sal’nikova, E.B., Yakovleva, S.Z., Fedoseenko, A.M., Plotkina, Y.V. 2010. Convergent processes in the evolution of the early caledonian Bayan-Khongor zone of Central Asia: Evidence from geological and geochronological investigations of the Khan-Ula gabbroid pluton. Doklady Earth Sciences, vol. 433, p. 937-943. https://doi.org/10.1134/S1028334X10070202
Tomurtogoo, O., 1989. Ophiolites and Formation of Folded Belts in Mongolia. Unpublished PhD Thesis. Russian Academy of Sciences, Moscow (in Russian)
Tomurtogoo, O., 2014. Tectonics of Mongolia. In: Petrov, O.V., Leonov, Yu.G., Tingdong, Li., Tomurtogoo, O. (Eds), Tectonics of northern, central, and eastern Asia: Explanatory note to the tectonic map of northern central eastern Asia and adjacent areas at scale 1: 2500000. Saint Petersburg, Russia, p. 110-126.
Wakabayashi, J., Dilek, Y. 2003. What constitutes ‘emplacement’ of an ophiolite?: mechanisms and relationship to subduction initiation and formation of meta- morphic soles. In: Dilek, Y., Robinson, P.T. (Eds), Ophiolites in Earth History. Special Publications, Geological Society, London, vol. 218, p. 427-447. https://doi.org/10.1144/GSL.SP.2003.218.01.22
Whitney, D.L., Evans, B.W. 2010. Abbreviations for names of rock-forming minerals. American mineralogist, vol. 95(1), p. 185-187. https://doi.org/10.2138/am.2010.3371
Windley, B.F., Alexeiev, D., Xiao, W., Kröner, A., Badarch, G. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, vol. 164, p. 31-47. https://doi.org/10.1144/0016-76492006-022
Winchester, J.A., Floyd, P.A. 1977. Geochemical discrimination of different magma series and their differentiation product using immobile elements. Chemical geology, vol. 20, p. 325-343. https://doi.org/10.1016/0009-2541(77)90057-2
Wood, D.A. 1980. The application of a Th–Hf–Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province. Earth and planetary science letters, vol. 50(1), p. 11-30. https://doi.org/10.1016/0012-821X(80)90116-8
Xiao, W.J., Windley, B.F., Sun, S., Li, J., Huang, B., Han, C., Yuan, C., Sun, M., Chen, H. 2015. A tale of amalgamation of three Permo-Triassic collage systems in central Asia: Oroclines, sutures, and terminal accretion. Annual review of earth and planetary sciences, vol. 43, p. 477-507. https://doi.org/10.1146/annurev-earth-060614-105254
Xiao, W., Windley, B.F., Han, C., Liu, W., Wan, B., Zhang, J., Ao, S., Zhang, Z., Song, D. 2018. Late Paleozoic to early Triassic multiple roll-back and oroclinal bending of the Mongolia collage in Central Asia. Earth-Science Reviews, vol. 186, p. 94-128. https://doi.org/10.1016/j.earscirev.2017.09.020
Yarmolyuk, V.V., Kozlovsky, A.M., Travin, A.V., Kirnozova, T.I., Fugzan, M.M., Kozakov, I.K., Plotkina, Y.V., Eenjin, G., Oyunchimeg, T., Sviridova, O.E. 2019. Duration and Geodynamic Nature of Giant Central Asian Batholiths: geological and geochronological studies of the Khangai Batholith. Stratigraphy and Geological Correlation, vol. 27, p. 73-94. https://doi.org/10.1134/S0869593819010088
Zonenshain, L.P. 1973. The evolution of Central Asiatic geosynclines through sea-floor spreading. Tectonophysics, vol. 19(3), p. 213-232. https://doi.org/10.1016/0040-1951(73)90020-6
Zorin, Y.A. 1999. Geodynamics of the western part of the Mongolia-Okhotsk collisional belt, Trans-Baikal region (Russia) and Mongolia. Tectonophysics, vol. 306(1), p. 33-56. https://doi.org/10.1016/S0040-1951(99)00042-6
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Bayarmaa Batsukh, Turbold Sukhbaatar, Gerel Ochir, Oyunbold Sukhbaatar, Odgerel Dashdorjgochoo

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright on any research article in the Mongolian Geoscientist is retained by the author(s).
The authors grant the Mongolian Geoscientist a license to publish the article and identify itself as the original publisher.

Articles in the Mongolian Geoscientist are Open Access articles published under a Creative Commons Attribution 4.0 International License CC BY.
This license permits use, distribution and reproduction in any medium, provided the original work is properly cited.