Magnetotelluric studies in Mongolia: Progress status and outlook

Authors

DOI:

https://doi.org/10.5564/mgs.v30i61.3906

Keywords:

Electrical conductivity, inversion, Lithosphere, Geothermal fields, Mineral deposits

Abstract

Mongolia is a unique natural laboratory for studying intracontinental surface deformation and intraplate volcanism due to its location within the high plateaus of the Central Asian Orogenic Belt, far away from active plate margins. The region is also characterized by zones of economically significant mineral deposits and vast geothermal resources, which are intrinsically linked to its lithospheric architecture and crust-mantle interactions. Key earth’s properties, such as temperature, fluid content, and partial melt, influence the subsurface electrical conductivity - a target parameter of the magnetotelluric method. Between 2016 and 2024, two large-scale international magnetotelluric projects were conducted, resulting in more than 784 magnetotelluric measurements across a vast area of about 1000×1250 km2. Additionally, from 2019 to 2023, a focused international magnetotelluric study was carried out at the geothermal field near Tsenkher in the Khangai Mountains, with 256 magnetotelluric measurements over a smaller area of about 35×40 km2. These projects contributed significantly to understanding the region’s lithospheric processes and geothermal systems. Crucially, the knowledge transfer from these collaborative projects has enabled Mongolian researchers to initiate and perform their own magnetotelluric surveys to explore geologically significant areas across the region. This review details performed magnetotelluric surveys (as of the end of 2024), highlights the key results, and discusses potential directions for future research.

Downloads

Download data is not yet available.
Abstract
316
PDF
189

Author Biography

Alexey Kuvshinov, Department of Earth and Planetary Sciences, Institute of Geophysics, ETH Zurich, 8092, Switzerland

Institute of Solar-Terrestrial Physics, Siberian Branch of Russian Academy of Sciences, Irkutsk, 664033, Russia

References

Berdichevsky, M.N., Dmitriev, V.I. 2010. Models and methods of magnetotellurics. Springer Springer Berlin, Heidelberg, 564 p. https://doi.org/10.1007/978-3-540-77814-1

Cagniard, L. 1953. Basic theory of the magneto-telluric method of geophysical prospecting. Geophysics, vol. 18(3), p. 605-635. https://doi.org/10.1190/1.1437915

Comeau, M.J., Batmagnai, E., Tserendug, Sh., Bayartogtokh, E., Kuvshinov, A., Demberel, S. 2024b. Implications for seismic hazard assessment from the characterization of active fault zones near Ulaanbaatar with electrical resistivity models. Abstracts of the 26th International Electromagnetic Induction Workshop 2024, Beppu, Japan.

Comeau, M.J., Becken, M., Connolly, D., Grayver, A.V., Kuvshinov, A. 2020b. Compaction‐Driven Fluid Localization as an Explanation for Lower Crustal Electrical Conductors in Intracontinental Setting. Geophysical Research Letters, vol. 47(19), e2020GL088455. https://doi.org/10.1029/2020GL088455

Comeau, M.J., Becken, M., Grayver, A.V., Käufl, J.S., Kuvshinov, A.V. 2022a. The geophysical signature of a continental intraplate volcanic system: From surface to mantle source. Earth and Planetary Science Letters, v. 578, 117307. https://doi.org/10.1016/j.epsl.2021.117307

Comeau, M.J., Becken, M., Käufl, J.S., Grayver, A.V., Kuvshinov, A.V., Tserendug S., Batmagnai, E., Demberel, S. 2020a. Evidence for terrane boundaries and suture zones across Southern Mongolia detected with a 2-dimensional magnetotelluric transect. Earth, Planets and Space, vol. 72, p. 1-13, https://doi.org/10.1186/s40623-020-1131-6

Comeau, M.J., Becken, M., Kuvshinov, A.V. 2022b. Imaging the Whole‐Lithosphere Architecture of a Mineral System - Geophysical Signatures of the Sources and Pathways of Ore‐Forming Fluids. Geochemistry, Geophysics, Geosystems, vol. 23(8), e2022GC010379. https://doi.org/10.1029/2022GC010379

Comeau, M.J., Becken, M., Kuvshinov, A.V., Demberel, S. 2021a. Crustal architecture of a metallogenic belt and ophiolite belt: Implications for mineral genesis and emplacement from 3-D electrical resistivity models (Bayankhongor area, Mongolia). Earth, Planets and Space, vol. 73, p. 1-20, https://doi.org/10.1186/s40623-021-01400-9

Comeau, M.J., Käufl, J.S., Becken, M., Kuvshinov, A., Grayver, A.V., Kamm, J., Demberel, S., Sukhbaatar, U., Batmagnai, E. 2018. Evidence for fluid and melt generation in response to an asthenospheric upwelling beneath the Hangai Dome, Mongolia. Earth and Planetary Science Letters, vol. 487, p. 201-209. https://doi.org/10.1016/j.epsl.2018.02.007

Comeau, M.J., Rigaud, R., Batmagnai, E., Tserendug, Sh., Kuvshinov, A., Becken, M., Demberel, S. 2024a. Insights into the structure of the Mongol‐Okhotsk suture zone, Adaatsag ophiolite, and tectonic boundaries of the Central Asian Orogenic Belt (Mongolia) from electrical resistivity imaging and seismic velocity models. Journal of Geophysical Research: Solid Earth, vol. 129(4), e2023JB028503. https://doi.org/10.1029/2023JB028503

Comeau, M.J., Becken, M., Kuvshinov, A.V., Demberel, S., Batmagnai, E., Tserendug, S. 2021b. Investigating the Whole‐lithosphere Structure of a Mineral System-Pathways and Source of Ore‐forming Fluids Imaged with Magnetotelluric Modeling. Acta Geologica Sinica (English Edition), vol. 95(S1), p. 73-75. https://doi.org/10.1111/1755-6724.14837

Comeau, M.J., Stein, C., Becken, M., Hansen, U. 2021c. Geodynamic Modelling of Lithospheric Removal and Surface Deformation: Application to Intraplate Uplift in Central Mongolia. Journal of Geophysical Research: Solid Earth, vol. 126(5), e2020JB021304. https://doi.org/10.1029/2020JB021304

Egbert, G.D., Kelbert, A. 2012. Computational recipes for electromagnetic inverse problems. Geophysical Journal International, vol. 189(1), p. 251-267. https://doi.org/10.1111/j.1365-246X.2011.05347.x

Enkhzul, B., Batmagnai, E. 2021. 1-D MT inversion using by deterministic inversion technique. Journal of Astronomy and Geophysics, Institute of Astronomy and Geophysics, Mongolian Academy of Sciences, vol. 8, p. 94-105 (in Mongolian) https://iag.mn/file/Journals/Setguul_N8.pdf

Enkhzul, B., Batmagnai, E., Tserendug, S., Bayanjargal, G. 2022. Investigation of the electrical resistivity structure of the subsurface at Mogod valley in central Mongolia: Insight is using 1D magnetotelluric inversion. Mongolian Geoscientist vol. 27(54), p. 37-50. https://doi.org/10.5564/mgs.v27i54.1810

Enkhzul, B., Tserendug, Sh., Batmagnai, E. 2021. MT signal processing and modeling: implementation for LEMI-423 MT stations. Journal of Astronomy and Geophysics, Institute of Astronomy and Geophysics, Mongolian Academy of Sciences, vol. 8, p. 106-118 (in Mongolian) https://iag.mn/file/Journals/Setguul_N8.pdf

Erdenechimeg, B. 2023. Magnetotelluric exploration of intermediate temperature geothermal systems and mineral resources in central Mongolia. Doctoral Thesis. ETH Zurich, 293 p. https://doi.org/10.3929/ethz-b-000623203

Erdenechimeg, B., Samrock, F., Grayver, A., Kuvshinov, A., Saar, M.O., Sodnomsambuu, D., Shoovdor, T., Dorj, P. 2022. Using MT for understanding the formation of nonvolcanic geothermal systems: case study from Tsenkher geothermal area in Mongolia, Abstracts of the 25th EM induction workshop, Çeşme, Turkey, September 11-17, 2022, https://doi.org/10.3929/ethz-b-000595695

Erdenechimeg, B., Samrock, F., Grayver, A.V., Kuvshinov, A., Saar, M.O., Sodnomsambuu, D., Battuulai, T., Shoovdor, T., Dorj, Purevsuren., Dolgorsuren, O. 2019. Integrated geoscientific exploration for geothermal energy utilization in the Mongolian Hangai. Geophysical Research Abstracts, vol. 21, EGU2019-8983. https://doi.org/10.3929/ethz-b-000392518

Erdenechimeg, B., Samrock, F., Grayver, A.V., Kuvshinov, A., Saar, M.O., Sodnomsambuu, D., Battuulai, T., Shoovdor, T., Dorj, Purevsuren., Dolgorsuren O. 2020. 3-D magnetotelluric investigation of the mid-enthalpy geothermal region near Tsetserleg city in Mongolian Arkhangai province. AGU Fall Meeting 2020, Abstract GP007-0011. 2020AGUFMGP0070011E

Grayver, A.V. 2015. Parallel three-dimensional magnetotelluric inversion using adaptive finite-element method. Part I: theory and synthetic study. Geophysical Journal International, vol. 202(1), p. 584-603. https://doi.org/10.1093/gji/ggv165

Guy, A., Tiberi, C., Mijiddorj, S. 2024. Crustal structures from receiver functions and gravity modeling in central Mongolia. Journal of Geophysical Research: Solid Earth,

vol. 129(1), e2023JB027614. https://doi.org/10.1029/2023JB027614

Harpering, D. 2018. Robust processing scheme for magnetotelluric data. MSc dissertation; University of Münster.

Hermance, J.F., Thayer, R.E., 1975. The telluric-magnetotelluric method. Geophysics, vol. 40(4), p. 664-668. https://doi.org/10.1190/1.1440557

Huber, P.J., Ronchetti, E.M. 2009. Robust Statistics (2nd ed.). Hoboken, NJ: John Wiley & Sons Inc. 354 p. https://onlinelibrary.wiley.com/doi/book/10.1002/9780470434697

Jin, S., Sheng, Y., Comeau, M.J., Becken, M., Wei, W., Ye, G., Dong, H., Zhang, L. 2022. Relationship of the crustal structure, rheology, and tectonic dynamics beneath the Lhasa-Gangdese Terrane (Southern Tibet) based on a 3-D electrical model. Journal of Geophysical Research: Solid Earth, vol. 127(11), e2022JB024318. https://doi.org/10.1029/2022JB024318

Kalscheuer, T., Juanatey, M., Meqbel, N., Pedersen, L.B. 2010. Non-linear model error and resolution properties from two-dimensional single and joint inversions of direct current resistivity and radiomagnetotelluric data. Geophysical Journal International, vol. 182(3), p. 1174-1188. https://doi.org/10.1111/j.1365-246X.2010.04686.x

Käufl, J.S., Grayver, A.V., Comeau, M.J., Kuvshinov, A.V., Becken, M., Kamm, J., Batmagnai, E., Demberel, S. 2020. Magnetotelluric multi-scale 3-D inversion reveals crustal and upper mantle structure beneath the Hangai and Gobi-Altai regions in Mongolia. Geophysical Journal International, vol. 221(2), p. 1002-1028. https://doi.org/10.1093/gji/ggaa039

Key, K. 2016. MARE2DEM: a 2-D inversion code for controlled-source electromagnetic and magnetotelluric data. Geophysical Journal International, vol. 207(1), p. 571-588. https://doi.org/10.1093/gji/ggw290

Kuvshinov, A. 2012. Deep Electromagnetic Studies from Land, Sea, and Space: Progress Status in the Past 10 years. Survey in Geophysics, vol. 33, p. 169-209. https://doi.org/10.1007/s10712-011-9118-2

Rigaud, R. 2024. Regional magnetotelluric study across Mongolia: Constraining lithospheric properties and architecture. Doctoral Thesis. ETH Zurich, 223 p. https://doi.org/10.3929/ethz-b-000709100

Rigaud, R., Comeau, M Joseph., Becken, M., Kuvshinov, A.V., Tserendug, S., Batmagnai, E., Demberel, S. 2023. Magnetotelluric Data Across Mongolia: Implications for Intracontinental Deformation and Intraplate Volcanism - Report on New Measurements, EGU General Assembly 2023, Vienna, Austria, 24-28 April 2023, EGU23-9485. https://doi.org/10.5194/egusphere-egu23-9485

Schultz, A. 2010. EMScope: a continental scale magnetotelluric observatory and data discovery resource, Data Science Journal, vol. 8, IGY6–IGY20. https://doi.org/10.2481/dsj.SS_IGY-009

Tikhonov, A.N. 1950. On determining electrical characteristics of the deep layers of the Earth's crust: in Doklady Akademii Nauk, v. 73, p. 295-297. (in Russian)

Thiel, S., Goleby, B.R., Pawley, M.J. Heinson, G. 2020. AusLAMP 3D MT imaging of an intracontinental deformation zone, Musgrave Province, Central Australia. Earth, Planets and Space, vol. 72(98). https://doi.org/10.1186/s40623-020-01223-0

Ziolkowski, A., Slob, E. 2019. Introduction to Controlled-Source Electromagnetic Methods: Detecting Subsurface Fluids. Cambridge University Press. https://doi.org/10.1017/9781107415904

Downloads

Published

2025-05-30

How to Cite

Erdenechimeg, B., & Kuvshinov, A. (2025). Magnetotelluric studies in Mongolia: Progress status and outlook. Mongolian Geoscientist, 30(61), 33–52. https://doi.org/10.5564/mgs.v30i61.3906

Issue

Section

Review papers