Switching of the Dimer-Row direction through Sb-passivation on the vicinal Si(001)-4° off surface of a single domain

Authors

  • Otgonbayar Dugerjav Department of Physics, School of Applied Sciences, Mongolian University of Science and Technology, Ulaanbaatar, Mongolia
  • Hidong Kim Department of Physics and Institute of Photonics and Information Technology, Chonbuk National University, Jeonju 561-756, Korea
  • Jae M. Seo Department of Physics and Institute of Photonics and Information Technology, Chonbuk National University, Jeonju 561-756, Korea

DOI:

https://doi.org/10.5564/jasea.v2i1.3494

Keywords:

Sb interface, semiconductor crystal, Si surface

Abstract

We have investigated Sb interface on the single-domain vicinal Si(001) surface inclined by 4° toward [110] direction using scanning tunneling microscopy and high-resolution synchrotron photoelectron spectroscopy. This vicinal Si(100)-4° off surface is reconstructed to form nine-dimer-wide single-domain (001)-p(2×2) terraces separated by rebonded DB double-layer steps, when the Si-dimer rows perpendicular to the steps. By 2ML Sb-deposition at RT and subsequent postannealing at 500°C, the Si surface has been covered by Sb-dimer rows whose direction is parallel to the steps composed of SA and SB (Sb rebounded atom) steps. And all the Si 2p components related to the clean surface have disappeared, while the Sb-Si interfacial component has been identified. Such a component is mainly due to charge transfer between Si and Sb atoms at the top layer. Based on these results, it has been concluded that Sb atoms passivate the vicinal Si(001)-4° off surface through forming 1ML Sb layers composed of Sb dimers and Sb rebonded atoms.

Downloads

Download data is not yet available.
Abstract
32
PDF
36

References

S. Bengió, M. Martin, J. Avila, M. C. Asensio, and H. Ascolani, Atomic structure of the Sb-terminated Si(111) surface: A photoelectron diffraction study, Phys. Rev. B 65 (2002) 205326. https://doi.org/10.1103/PhysRevB.65.205326

K.-H. Park, J.S. Ha, W.S. Yun, E.-H. Lee, J.-Y. Yi and S.-J. Park, Atomic structure and formation kinetics of the Sb/Si(111)-5√3×5√3 surface, Phys. Rev. B 55 (1997) 9267. https://doi.org/10.1103/PhysRevB.55.9267

A. Antons, K. Schroeder, B. Voigtländer, V. Cherepanov, R. Berger, and S. Bläugel, Element specific surface reconstructions of Islands during Surfactant-Mediated Growth on Si (111), Phys. Rev. Lett. 89 (2002) 236101. https://doi.org/10.1103/PhysRevLett.89.236101

M. A. Boshart, A. A. Bailes III, and L. E. Seiberling, Site Exchange of Ge and Sb on Si(100) during Surfactant-Mediated Epitaxial Growth, Phys. Rev. Lett. 77 (1996) 1087. https://doi.org/10.1103/PhysRevLett.77.1087

M. Horn-von Hoegen, M. Copel, J. C. Tsang, M. C. Reuter, and R. M. Tromp, Surfactant-mediated growth of Ge on Si(111), Phys. Rev. B 50 (1994) 10811. https://doi.org/10.1103/PhysRevB.50.10811

B. Garni, I. I. Kravchenko, and C. T. Salling, STM studies of the initial stages of growth of Sb on Si(100) surfaces, Surf. Sci. 423 (1999) 43. https://doi.org/10.1016/S0039-6028(98)00888-7

A. A. Saranin, A. V. Zotov, V. G. Kotlyar, V. G. Lifshits, O. Kubo, T. Harada, T. Kobayashi, N. Yamaoka, M. Katayama, and K. Oura, Surface roughening at the one-monolayer Sb/Si(100) interface, Phys. Rev. B 65 (2001) 033312. https://doi.org/10.1103/PhysRevB.65.033312

A. Cricenti, C. Ottaviani, C. Comicioli, C. Crotti, L. Ferrari, C. Quaresima, P. Perfetti, and G. Le Lay, Sbterminated Si(110), Si(100) and Si(111) surfaces studied with high resolution core-level spectroscopy, Appl.Surf. Sci. 162-163 (2000) 380. https://doi.org/10.1016/S0169-4332(00)00219-1

A. Cricenti, P. Perfetti, and G. Le Lay, High-resolution Si 2p core-level photoemission spectroscopy on Sb-terminated Si(100) surfaces: evidence for a strong interfacial component, Surf. Sci. 401 (1998) 427. https://doi.org/10.1016/S0039-6028(98)00048-X

P. De Padova, R. Larciprete, C. Quaresima, C. Ottaviani, B. Ressel, and P. Perfetti, Identification of the Si 2p Surface Core Level Shifts on the Sb/Si(001)−(2×1) Interface, Phys. Rev. Lett. 81 (1998) 2320. https://doi.org/10.1103/PhysRevLett.81.2320

M. Shimomura, T. Abukawa, K. Yoshimura, J. H. Oh, H. W. Yeom, and S. Kono, Photoelectron diffraction study of the Si2p surface-core-level-shift of the Si(001)(1×2)-Sb surface, Surf. Sci. 493 (2001) 23. https://doi.org/10.1016/S0039-6028(01)01184-0

Cricenti, C. Ottaviani, C. Comicioli, P. Perfetti, and G. Le Lay, Sb/Si(110)2×3 surface studied by highresolution Si 2p core-level photoemission spectroscopy, Phys. Rev. B 58 (1998) 7086. https://doi.org/10.1103/PhysRevB.58.7086

A. Cricenti, C. Quaresima, C. Ottaviani, L. Ferrari, P. Perfetti, C. Crotti, G. LeLay, and G. Margaritondo, Sharp high-resolution Si 2p core level on the Sb-terminated Si(111) surface: Evidence for charge transfer, Phys. Rev. B 62 (2000) 9931. https://doi.org/10.1103/PhysRevB.62.9931

E. S. Cho, M. K. Kim, J. W. Park, H. Hur, C. Jeon, J. Y. Baik, C. C. Hwang, T. H. Kang, B. Kim, K. S. An, C.-Y. Park, and S. B. Lee, Photoemission study on the Sb-induced reconstruction of the Si(112) surface, Surf. Sci. 591 (2005) 38. https://doi.org/10.1016/j.susc.2005.06.017

J. Dąbrowski, H.-J. Müssig, G. Wolff, and S. Hinrich, Surface reconstruction suggests a nucleation mechanism in bulk: Sb/Si(113) and {113} planar defects, Surf. Sci. 411 (1998) 54 https://doi.org/10.1016/S0039-6028(98)00327-6

G. Wolff, H.-J. Müssig, J. Dąbrowski, W. Arabczyk, and S. Hinrich, Structural models for Sb on Si(113): an experimental and theoretical STM study, Surf. Sci. 357-358 (1996) 667. https://doi.org/10.1016/0039-6028(96)00242-7

K. S. An, C. C. Hwang, Y. K. Kim, E. S. Cho, C.-Y. Park, S. Pukird, A. Kakizaki, T. Okuda, T. Kinoshita, Atomic and electronic structures of Si(113)1×1-Sb surface: core-level shifts and surface states, Surf. Sci. 513 (2002) 49. https://doi.org/10.1016/S0039-6028(02)01732-6

W.E. McMahon, I.G. Batyrev, T. Hannappel, J.M. Olson and S.B. Zhang, 5-7-5 line defects on As∕Si(100): A general stress-relief mechanism for V/IV surfaces, Phys. Rev. B 74 (2006) 033304. https://doi.org/10.1103/PhysRevB.74.033304

A.A. Baski, S.C. Erwin, L.J. Whitman, The structure of silicon surfaces from (001) to (111), Surf. Sci. 392 (1997) 69. https://doi.org/10.1016/S0039-6028(97)00499-8

M. Dürr, Z. Hu, A. Biedermann, U. Höfer, T. F. Heinz, Real-space investigation of hydrogen dissociation at step sites of vicinal Si(001) surfaces, Phys. Rev. B 63 (2001) 121315 https://doi.org/10.1103/PhysRevB.63.121315

Y.J. Lee, J.W. Kim, S. Kim, Atomic-step rearrangement on Si(100) by interaction with antimony, J. Phys. Condens. Matter 9 (1997) L583. https://doi.org/10.1088/0953-8984/9/44/002

A. García, J.E. Northrup, Stress relief from alternately buckled dimers in Si (100), Phys. Rev. B 48 (1993) 17350. https://doi.org/10.1103/PhysRevB.48.17350

M. Siebert, Th. Schmidt, J.I. Flege, J. Falta, Sb-induced reconstructions on Si(113): Adatoms as the key elements, Phys. Rev. B 72 (2005) 045323. https://doi.org/10.1103/PhysRevB.72.045323

S.J. Jenkins, G.P. Srivastava, Comparative study of Sb bonding on group-IV semiconductor (001) substrates, Phys. Rev. B 56 (1997) 9221 https://doi.org/10.1103/PhysRevB.56.9221

S.J. Jenkins, G.P. Srivastava, Bonding and structure of the Si(001)(2×1)-Sb surface, Surf. Sci. 352-354 (1996) 411. https://doi.org/10.1016/0039-6028(95)01171-4

Cricenti, H. Bernhoff, B. Reihl, Occupied and unoccupied surface states on the single-domain Si (100): Sb- 2×1 surface, Phys. Rev. B 48 (1993) 10983. https://doi.org/10.1103/PhysRevB.48.10983

G. Li, Y.-C. Chang, Electronic structures of As/Si(001) 2×1 and Sb/Si(001)-2×1 surfaces, Phys. Rev. B 50 (1994) 8675. https://doi.org/10.1103/PhysRevB.50.8675

T.-W. Pi, C.-P. Cheng, I.-H. Hong, Si 2p core level spectroscopy in Si(001)2×1: the charge-transfer effect, Surf. Sci. 418 (1998) 113. https://doi.org/10.1016/S0039-6028(98)00706-7

Downloads

Published

2021-12-01

How to Cite

[1]
O. Dugerjav, H. Kim, and J. M. Seo, “Switching of the Dimer-Row direction through Sb-passivation on the vicinal Si(001)-4° off surface of a single domain ”, J. appl. sci. eng., A, vol. 2, no. 1, pp. 45–53, Dec. 2021.

Issue

Section

Articles