Electric-field and strain effect on magnetism on transition metal dichalcogenides

Authors

  • Munkhsaikhan Gonchigsuren 1 Department of Physics, School of Applied Sciences, Mongolian University of Science and Technology, Ulaanbaatar, Mongolia
  • Odkhuu Dorj 2 Department of Physics, the College of Natural Sciences, Incheon National University, Korea

DOI:

https://doi.org/10.5564/jasea.v2i1.3492

Keywords:

Magnetic momentum, 2D materials, first principles calculation

Abstract

Herein, from first-principles density functional calculations, intrinsic magnetism and magnetocrystalline anisotropy (MA) in two-dimensional (2D) structure and individual atom pairs are shown effectively controllable by means of simultaneous voltage and strain effects. By tuning the strain in transition metal dichalcogenides (TMDs) MoS2, WS2, MoSe2 and WSe2 with Os adatom as a model system, we demonstrate that the voltage dependence of MA varies from an extremely large value of 150 meV/Os in perpendicular to the lateral plane into -25 meV/Os in plane by an electric field of only 0.1–0.2 V/Å.

Downloads

Download data is not yet available.
Abstract
35
PDF
30

References

A. A. Khajetoorians, J. Wiebe, B. Chilian, and R. Wiesendanger, Realizing all-spin-based logicoperations atom by atom, Science 332, 1062 (2011). https://doi.org/10.1126/science.1201725

A. A. Khajetoorians, B. Baxevanis, C. Hubner, T. Schlenk, S. Krause, T. O. Wehling, S. Lounis,A.Lichtenstein, D. Pfannkuche, J. Wiebe, and R. Wiesendanger, Current-driven spin dynamics of artificially constructed quantum magnets, Science 339, 55 (2013). https://doi.org/10.1126/science.1228519

A. A. Khajetoorians and J. Wiebe, Science 344, 976 (2014). https://doi.org/10.1126/science.1254402

J. C. Slonczewski, Conductance and exchange coupling of two ferromagnets separated by a tunneling barrier, Phys. Rev. B 39,6995 (1989). https://doi.org/10.1103/PhysRevB.39.6995

S. Ikeda, K. Miura, H. Yamamoto, K. Mizunuma, H. D. Gan, M. Endo, S. Kanai, J. Hayakawa, F.Matsukura, and H. Ohno, A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction, Nat. Mater. 9, 721 (2010). https://doi.org/10.1038/nmat2804

A. D. Kent, Perpendicular all the way, Nat. Mater. 9, 699 (2010). https://doi.org/10.1038/nmat2844

R. Xiao, D. Fritsch, M. D. Kuz'min, K. Koepernik, H. Eschrig, M. Richter, K. Vietze, and G. Seifer, Co dimers on hexagonal carbon rings proposed as subnanometer magnetic storage bits, Phys.Rev. Lett. 103, 187201 (2009). https://doi.org/10.1103/PhysRevLett.103.187201

P. Gambardella, S. Rusponi, M. Veronese, S. S. Dhesi, C. Grazioli, A. Dallmeyer, I. Cabria, R. Zeller, P. H. Dederichs, K. Kern, C. Carbone, and H. Brune, Giant magnetic anisotropy of single Cobalt atoms and nano particles, Science 300, 1130 (2003). https://doi.org/10.1126/science.1082857

I. G. Rau, S. Baumann, S. Rusponi, F. Donati, S. Stepanow, L. Gragnaniello, J. Dreiser, C. Piamonteze, F. Nolting, S. Gangopadhyay, O. R. Albertini, R. M. Macfarlane, C. P. Lutz, B. A. Jones, P. Gambardella, A. J. Heinrich, and H. Brune, Reachingthe magnetic anisotropy limit of a 3d metal atom, Science 344, 988 (2014). https://doi.org/10.1126/science.1252841

F. Donati, L. Gragnaniello, A. Cavallin, F. D. Natterer, Q. Dubout, M. Pivetta, F. Patthey, J. Dreiser, C. Piamonteze, S. Rusponi, and H. Brune, Tailoring the magnetism of Co atoms on graphenethrough substrate hybridization, Phys. Rev. Lett. 113, 177201 (2014). https://doi.org/10.1103/PhysRevLett.113.177201

C. F. Hirjibehedin, C.-Y. Lin, A. F. Otte, M. Ternes, C. P. Lutz, B. A. Jones, and A. J. Heinric, Large magnetic anisotropy of a single atomic spin embedded in a surface molecular network, Science 317, 1199 (2007). https://doi.org/10.1126/science.1146110

D. Odkhuu, Giant perpendicular magnetic anisotropy of an individual atom on two-dimensionaltransition metal dichalcogenides, Phys. Rev. B 94, 060403(R) (2016). https://doi.org/10.1103/PhysRevB.94.060403

X. Ou, H. Wang, F. Fan, Z. Li, and H. Wu, Giant magnetic anisotropy of Co, Ru, and Os adatoms on MgO (001) surface, Phys. Rev. Lett. 115, 257201 (2015). https://doi.org/10.1103/PhysRevLett.115.257201

W. Eerenstein, N. D. Mathur, and J. F. Scott, Multiferroic and magnetoelectric materials, Nature 442,759 (2006). https://doi.org/10.1038/nature05023

M. Bibes and A. Barthelemy, Towards a magnetoelectric memory, Nat. Mater. 7, 425 (2008). https://doi.org/10.1038/nmat2189

N. Spaldin, S. W. Cheong, and R. Ramesh, Multiferroics: Past, present, and future, Phys. Today 63,38 (2010). https://doi.org/10.1063/1.3502547

G. Kresse and J. Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B 47, 558(1993). https://doi.org/10.1103/PhysRevB.47.558

J. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys.Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

W. Zhou, X. Zou, S. Najmaei, Z. Liu, Y. Shi, J. Kong, J. Lou, P. M. Ajayan, B. I. Yakobson, andJ.C. Idrobo, Intrinsic structural defects in monolayer molybdenum disulfide, Nano Lett.13, 2615(2013). https://doi.org/10.1021/nl4007479

H. Li, C. Tsai, A. L. Koh, L. Cai, A. Contryman, A. H. Fragapane, J. Zhao, H. S. Han,H.C. Manoharan, F. Abild-Pedersen, J. K. Nørskov, and X. Zheng, Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies, Nat. Mater.15, 48 (2016). https://doi.org/10.1038/nmat4465

D. D. Koelling and B. N. Harmon, J. Phys. C Solid State 10, 3107 (1977). https://doi.org/10.1088/0022-3719/10/16/019

A. C. Gomez, R. Roldan, E. Cappelluti, M. Buscema, F.Guinea, H. S. J. van der Zant, andG. A. Steele, Local Strain Engineering in Atomically Thin MoS2, Nano Lett. 13, 5361 (2013). https://doi.org/10.1021/nl402875m

C. R. Zhu, G.Wang, B. L. Liu, X. Marie, X. F. Qiao, X. Zhang, X. X.Wu, H. Fan, P. H. Tan, T.Amand, and B. Urbaszek, Strain tuning of optical emission energy and polarization in monolayer and bilayer MoS2, Phys. Rev. B 88, 121301 (2013).

H. Li, A. W. Contryman, X. Qian, S. M. Ardakani, Y. Gong, X. Wang, J. M. Weisse, C. H. Lee,J.Zhao, P. M. Ajayan, J. Li, H. C. Manoharan, and X. Zheng, Optoelectronic crystal of artificialatoms in strain-textured molybdenum disulphide, Nat. Commun. 6, 7381 (2015). https://doi.org/10.1038/ncomms8381

N. Wakabayashi, H. G. Smith, and R. M. Nicklow, Lattice dynamics of hexagonal MoS2studied byneutron scattering, Phys. Rev. B 12, 659 (1975). https://doi.org/10.1103/PhysRevB.12.659

Downloads

Published

2021-12-25

How to Cite

[1]
M. Gonchigsuren and O. Dorj, “Electric-field and strain effect on magnetism on transition metal dichalcogenides”, J. appl. sci. eng., A, vol. 2, no. 1, pp. 34–39, Dec. 2021.

Issue

Section

Articles