Exploring Genetic Variants in Epidermal Differentiation Complex Genes in Severe Atopic Dermatitis: A Case Series
DOI:
https://doi.org/10.24079/cajms.2024.03.003Keywords:
Epidermis, High-throughput nucleotide sequencing, Filaggrin proteins, Genes, Dermatitis, atopicAbstract
Objective: The complex interplay between genetic and external factors contributes to the multifactorial nature of atopic dermatitis (AD). The study aimed to use next-generation sequencing (NGS) to identify and describe genetic alterations and polymorphisms in the epidermal differentiation complex (EDC) in two children with severe atopic dermatitis. Methods: A case-series study was conducted involving two children with severe atopic dermatitis, selected from a group of 103 based on questionnaire data, clinical manifestations (SCORAD index, skin moisture, trans-epidermal water loss), and laboratory tests (total IgE levels). Whole-exome sequencing (WES) was performed to analyze their genomic DNA. Results: Among the two participants, gene variants related to skin conditions, allergies, autoimmune disorders, and neurometabolic disorders were identified. Both participants exhibited variants in FLG, HRNR, and SPRR1B genes located in the Epidermal differentiation complex. Among these genetic variants, classifications such as “VUS/Weak Pathogenic” and “Likely Pathogenic” were observed, and synonymous variants were found alongside missense. A significant finding was the identification of rare alleles not documented in allele frequency databases. Conclusion: Identifying various alleles highlighted those multiple gene variants, acting together, may contribute to the development of the disease, warranting further investigation.
Downloads
28
References
1. Williams H, Stewart A, von Mutius E, et al. Is eczema re¬ally on the increase worldwide? J Allergy Clin Immunol. 2008;121(4):947-954.e915. https://doi.org/10.1016/j. jaci.2007.11.004
2. Ständer S. Atopic Dermatitis. N Engl J Med. 2021;384(12):1136-1143. https://doi.org/10.1056/NEJM¬ra2023911
3. Liang Y, Chang C, Lu Q. The Genetics and Epigenetics of Atopic Dermatitis-Filaggrin and Other Polymorphisms. Clin Rev Allergy Immunol. 2016;51(3):315-328. https://doi. org/10.1007/s12016-015-8508-5
4. Brettmann EA, de Guzman Strong C. Recent evolution of the human skin barrier. Exp Dermatol. 2018;27(8):859-866. https://doi.org/10.1111/exd.13689
5. Barker JN, Palmer CN, Zhao Y, et al. Null mutations in the fil¬aggrin gene (FLG) determine major susceptibility to early-on¬set atopic dermatitis that persists into adulthood. J Invest Dermatol. 2007;127(3):564-567. https://doi.org/10.1038/ sj.jid.5700587
6. Karki R, Pandya D, Elston RC, et al. Defining “mutation” and “polymorphism” in the era of personal genomics. BMC Med Genomics. 2015;8:37. https://doi.org/10.1186/s12920- 015-0115-z
7. Dębińska A. New Treatments for Atopic Dermatitis Target¬ing Skin Barrier Repair via the Regulation of FLG Expres¬sion. J Clin Med. 2021;10(11). https://doi.org/10.3390/ jcm10112506
8. Stout TE, McFarland T, Mitchell JC, et al. Recombinant filag¬grin is internalized and processed to correct filaggrin defi¬ciency. J Invest Dermatol. 2014;134(2):423-429. https://doi. org/10.1038/jid.2013.284
9. Mallol J, Crane J, von Mutius E, et al. The International Study of Asthma and Allergies in Childhood (ISAAC) Phase Three: A Global Synthesis. Allergol Immunopathol. 2013;41(2):73- 85. https://doi.org/10.1016/j.aller.2012.03.001
10. Hanifin JM, Rajka G. Diagnostic Features of Atopic Derma¬titis. Acta Derm Venereol. 1980;60(92):44-47. https://doi. org/10.2340/00015555924447
11. Severity scoring of atopic dermatitis: the SCORAD index. Consensus Report of the European Task Force on Atopic Dermatitis. Dermatology. 1993;186(1):23-31. https://doi. org/10.1159/000247298
12. Parra JL, Paye M. EEMCO guidance for the in vivo assess¬ment of skin surface pH. Skin Pharmacol Appl Skin Physiol. 2003;16(3):188-202. https://doi.org/10.1159/000069756
13. Stefaniak AB, Plessis J, John SM, et al. International guide¬lines for the in vivo assessment of skin properties in non-clin¬ical settings: part 1. pH. Skin Res Technol. 2013;19(2):59- 68. https://doi.org/10.1111/srt.12016
14. du Plessis J, Stefaniak A, Eloff F, et al. International guidelines for the in vivo assessment of skin properties in non-clinical settings: Part 2. transepidermal water loss and skin hydra¬tion. Skin Res Technol. 2013;19(3):265-278. https://doi. org/10.1111/srt.12037
15. Brunner PM, Guttman-Yassky E, Leung DY. The immu¬nology of atopic dermatitis and its reversibility with broad-spectrum and targeted therapies. J Allergy Clin Im¬munol. 2017;139(4S):S65-S76. https://doi.org/10.1016/j. jaci.2017.01.011
16. Cork MJ, Danby SG, Vasilopoulos Y, et al. Epidermal bar¬rier dysfunction in atopic dermatitis. J Invest Derma¬tol. 2009;129(8):1892-1908. https://doi.org/10.1038/ jid.2009.133
17. Auer PL, Johnsen JM, Johnson AD, et al. Imputation of exome sequence variants into population-based sam¬ples and blood-cell-trait-associated loci in African Amer¬icans: NHLBI GO Exome Sequencing Project. Am J Hum Genet. 2012;91(5):794-808. https://doi.org/10.1016/j. ajhg.2012.08.031
18. Myles S, Davison D, Barrett J, et al. Worldwide population differentiation at disease-associated SNPs. BMC Med Ge¬nomics. 2008;1:22. https://doi.org/10.1186/1755-8794-1- 22
19. Martin MJ, Estravís M, García-Sánchez A, et al. Genetics and Epigenetics of Atopic Dermatitis: An Updated System¬atic Review. Genes (Basel). 2020;11(4):442. https://doi. org/10.3390/genes11040442
20. Henry J, Hsu CY, Haftek M, et al. Hornerin is a compo¬nent of the epidermal cornified cell envelopes. FASEB J. 2011;25(5):1567-1576. https://doi.org/10.1096/fj.10- 168658
21. Zhang Z, Shi R, Xu S, et al. Identification of small proline-rich protein 1B (SPRR1B) as a prognostically predictive biomark¬er for lung adenocarcinoma by integrative bioinformatic analysis. Thorac Cancer. 2021;12(6):796-806. https://doi. org/10.1111/1759-7714.13836
22. Morar N, Cookson WO, Harper JI, et al. Filaggrin mutations in children with severe atopic dermatitis. J Invest Derma¬tol. 2007;127(7):1667-1672. https://doi.org/10.1038/sj. jid.5700739
23. Ekelund E, Liedén A, Link J, et al. Loss-of-function variants of the filaggrin gene are associated with atopic eczema and as¬sociated phenotypes in Swedish families. Acta Derm Venere-ol. 2008;88(1):15-19. https://doi.org/10.2340/00015555- 0383
24. Gupta J, Margolis DJ. Filaggrin gene mutations with special reference to atopic dermatitis. Curr Treat Options Allergy. 2020;7(3):403-413. https://doi.org/10.1007/s40521-020- 00271-x
25. Müller S, Marenholz I, Lee YA, et al. Association of Filag¬grin loss-of-function-mutations with atopic dermatitis and asthma in the Early Treatment of the Atopic Child (ETAC) population. Pediatr Allergy Immunol. 2009;20(4):358-361. https://doi.org/10.1111/j.1399-3038.2008.00808.x
26. Rajeshwari KA, Thomas MM, Nagaraj G. Filaggrin Gene Mutation in Pediatric Patients with Atopic Dermatitis: A Look into Indian Gene Pool, a Pilot Study. Indian J Der¬matol. 2023;68(2):135-140. https://doi.org/10.4103/ijd. ijd_403_22
27. Narmandakh Z, Tulgaa Kh, Munkhbayar A, et al. The De¬termination of Filaggrin Gene Single Nucleotides Polymor¬phisms in Patients with Atopic Dermatitis. Cent. Asian J. Med. Sci. 2017;3(1):31-40. https://doi.org/10.24079/ca¬jms.2017.01.005
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Mongolian National University of Medical Sciences

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.