The Effects of Qinggan-27 Recipe on Nonalcoholic Steatohepatitis Induced by High-fat Diet in Rats
DOI:
https://doi.org/10.24079/cajms.2024.03.001Keywords:
disease model, non-alcoholic fatty liver, Mongolian medicine, PGC-1α, UCP-2Abstract
Objective: The Qinggan-27 (QG-27) recipe is a traditional Mongolian medicine believed to improve liver function during Non-alcoholic steatohepatitis (NASH). We developed fatty liver models in rats by intragastric administration of a high-fat diet (HFD) to investigate the effects of the QG-27 recipe on the NASH model through the expression of PGC-1 α and UCP-2. Methods: Wister rats were fed with specially prepared HFD to create a pathological model for 6 weeks. After successful modeling, the patient was treated with QG-27 twice daily with intragastric administration of QG-27 at 150 mg/kg, 300 mg/kg, and 600 mg/kg, respectively, for 21 days. Biochemical, histopathological, and immunohistochemical analyses were conducted to evaluate the effect of QG-27 treatment. Results: Levels of AST, ALT, LDL-C, TG, and TC were significantly decreased, and HDL-C was increased in the intermediate dose of the QG-27 group compared to the control group (p<0.05). Immunohistochemical results demonstrated that an intermediate dose of the QG-27 recipe could significantly improve liver function in rats with fatty liver by increasing PGC-1α and UCP-2 expression. Conclusion: The intermediate (300 mg/ kg) dose of the QG-27 is a good candidate to be a dietary supplement for reducing fatty liver.
Downloads
10
References
1. Younossi Z, Anstee QM, Marietti M, et al. Global burden of NAFLD and NASH: trends, predictions, risk factors, and pre¬vention. Nat Rev Gastroenterol Hepatol. 2018;15(1):11-20. https://doi:10.1038/nrgastro.2017.109
2. Marjot T, Moolla A, Cobbold JF, et al. Nonalcoholic fat¬ty liver disease in adults: current etiology, outcomes, and management concepts. Endocr Rev. 2020;41(1). https:// doi:10.1210/endrev/bnz009
3. Diehl AM, Day C. Cause, pathogenesis, and treatment of non¬alcoholic steatohepatitis. N Engl J Med. 2017;377(21):2063- 2072. https://doi:10.1056/NEJMra1503519
4. The Resolution of the Government of Mongolia is the sec¬ond national program for preventing and controlling diseas¬es caused by wrong lifestyles; 2017
5. Marra F, Svegliati-Baroni G. Lipotoxicity and the gut-liver axis in NASH pathogenesis. J Hepatol. 2018;68(2):280-295. https://doi:10.1016/j.jhep.2017.11.014
6. Spahis S, Delvin E, Borys J, et al. Oxidative stress as a crit¬ical factor in nonalcoholic fatty liver disease pathogene¬sis. Antioxid Redox Signal. 2017;26(10):519-541. https:// doi:10.1089/ars.2016.6776
7. Dey A, Swaminathan K. Hyperglycemia-induced mitochon¬drial alterations in the liver. Life Sci. 2010;87(7-8):197-214. https://doi:10.1016/j.lfs.2010.06.007
8. Price NL, Gomes AP, Ling AJY, et al. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab. 2012;15(5):675-690. https://doi:10.1016/j.cmet.2012.04.003
9. Whitaker RM, Corum D, Beeson CC, et al. Mitochondrial biogenesis as a pharmacological target: a new approach to acute and chronic diseases. Annu Rev Pharmacol Toxi¬col. 2016;56:229-249. https://doi:10.1146/annurev-pharm¬tox-010715-103155
10. Scarpulla RC. Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network. Biochim Bio¬phys Acta. 2011;1813(7):1269-1278. https://doi:10.1016/j. bbamcr.2010.09.019
11. Besse-Patin A, Leveille M, Oropeza D, et al. Estrogen signals through peroxisome proliferator-activated receptor-gamma coactivator one alpha to reduce oxidative damage asso¬ciated with diet-induced fatty liver disease. Gastroenter¬ology. 2017;152(1):243-256. https://doi:10.1053/j.gas-tro.2016.09.017
12. Westerbacka J, Kolak M, Kiviluoto T, et al. Genes involved in fatty acid partitioning and binding, lipolysis, monocyte/mac¬rophage recruitment, and inflammation are overexpressed in the human fatty liver of insulin-resistant subjects. Diabetes. 2007;56(11):2759-2765. https://doi:10.2337/db07-0156
13. Yeh GY, Eisenberg DM, Kaptchuk TJ, et al. A systematic re¬view of herbs and dietary supplements for glycemic control in diabetes. Diabetes Care. 2003;26(4):1277-1294. https:// doi:10.2337/diacare.26.4.1277
14. Xu L, Zhao W, Wang D, et al. Chinese medicine in the bat¬tle against obesity and metabolic diseases. Front Physiol. 2018;9:850. https://doi:10.3389/fphys.2018.00850
15. Cicero AFG, Colletti A, Bellentani S. Nutraceutical approach to non-alcoholic fatty liver disease (NAFLD): the available clinical evidence. Nutrients. 2018;10(9):1153. https:// doi:10.3390/nu10091153
16. Zhong S, Fan Y, Yan Q, et al. The therapeutic effect of sily¬marin in treating nonalcoholic fatty disease: A meta-anal¬ysis (PRISMA) of randomized control trials. Medicine (Baltimore). 2017;96(49):e9061. https://doi:10.1097/ MD.0000000000009061
17. Zhanbala CDF. Secrets of Fanghai, Inner Mongolia People’s Publishing House, Hohhot;2014
18. Lei P, Tian S, Teng C, et al. Sulforaphane improves lipid metab¬olism by enhancing mitochondrial function and biogenesis in vivo and in vitro. Mol Nutr Food Res. 2021;65(11):e2170023. https://doi:10.1002/mnfr.202170023
19. Chen Z, Tian R, She Z, et al. Role of oxidative stress in non¬alcoholic fatty liver disease pathogenesis. Free Radic Biol Med. 2020;152:116-141. https://doi:10.1016/j.freerad-biomed.2020.02.025
20. St-Pierre J, Drori S, Uldry M, et al. Suppression of reactive oxygen species and neurodegeneration by the PGC-1 tran¬scriptional coactivators. Cell. 2006;127(2):397-408. https:// doi:10.1016/j.cell.2006.09.024
21. Rabinovitch RC, Samborska B, Faubert B, et al. AMPK main¬tains cellular metabolic homeostasis through the regula¬tion of mitochondrial reactive oxygen species. Cell Rep. 2017;21(1):1-9. https://doi:10.1016/j.celrep.2017.09.026
22. Tserendagva D. Malnutrition, poor blood, blood-separa¬tion, satiety relationship of the bloodletting therapy. The¬sis submitted for the degree of Science Doctor in Medical Education. Mongolian National University of Medical Sci¬ences. Mongolian State Academy of Sciences, Ulaanbaatar. 2018;23
23. Xin QI, Hong-Qing LI. Protective effects of Qinggan-27 pills on mouse models of alcoholic liver damage. Chi Trad Patent Med; 2018(12):260-265
24. Avwioro G. Histochemical uses of haematoxylin-a review. J Physics Conf Series. 2011;1:24-3
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Mongolian National University of Medical Sciences

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.