Assessment of Laser in Situ Keratomileusis Flap Predictability by Laser and Moria Microkeratome

Authors

  • Tsetsegjargal Baasanjav Department of Ophthalmology, School of Medicine, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia https://orcid.org/0009-0001-9843-1428
  • Uranchimeg Davaatseren Department of Ophthalmology, School of Medicine, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
  • Davaalkham Dambadarjaa Department of Epidemiology and Biostatistics, School of Public Health, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
  • Baasankhuu Jamyanjav Bolor Melmii Hospital, Ulaanbaatar, Mongolia
  • Uranchimeg Davaatseren Department of Ophthalmology, School of Medicine, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia

DOI:

https://doi.org/10.24079/cajms.2023.09.003

Keywords:

Coherence Tomography, Optical, Keratomileusis, Laser Therapy

Abstract

Objective: In the present study, we compared LASIK flap thickness predictability created by a FS laser versus a Moria microkeratome in Mongolian patients. Methods: A total of ninety-six candidates for the LASIK procedure were stratified into two groups: FS laser-assisted and MK flap creation. Flap thickness was determined at five points. The side-cut angle was measured in three directions at the margin interface. LASIK flap assessment was performed one month postoperatively by Spectralis anterior segment optical coherence tomography. Results: Ninety-five participants (190 eyes) were recruited; 190 eyes were stratified to the FS group and 78 eyes to the MK group. The FS group had relatively even flap configurations, and the MK group had meniscus-shaped flaps. Regarding CR-sphere and cylinder, there was significant difference between 2 groups. The mean cylinder was -1.216 ± 0.924 in FS group while it was -0.730 ± 0.738 in MK group. Similarly, the mean sphere was -3.635 ± 2.031 in FS-LASIK group and -2.984 ± 1.502 in MK-LASIK group. The side-cut architecture varied among the two groups. OCT-C and OCT1Temporal values were significantly different between two groups. Conclusion: Improving the predictability of LASIK flap thickness and morphology is significantly important.

Abstract
37
PDF
54

References

Reinstein DZ, Archer TJ, Gobbe M. The history of LASIK. J Refract Surg. 2012 Apr;28(4):291-8. https://doi.org/10.3928/1081597X-20120229-01.

Bashir ZS, Ali MH, Anwar A, et al. Femto-lasik. The recent innovation in laser assisted refractive surgery. J Pak Med Assoc. 2017;67:609-15. https://pubmed.ncbi.nlm.nih.gov/28420926/

López-Montemayor P, Valdez-García JE, Loya-García D, et al. Safety, efficacy and refractive outcomes of LASIK surgery in patients aged 65 or older. Int Ophthalmol. 2018 Aug;38(4):1515-20. https://doi.org/10.1007/s10792-017-0614-3

Stonecipher K, Ignacio TS, Stonecipher M. Advances in refractive surgery: microkeratome and femtosecond laser flap creation in relation to safety, efficacy, predictability, and biomechanical stability. Curr Opin Ophthalmol. 2006 Aug;17(4):368-72. https://doi.org/10.1097/01.icu.0000233957.88509.2d

Kymionis GD, Portaliou DM, Tsiklis NS, et al. Thin LASIK flap creation using the SCHWIND Carriazo-Pendular microkeratome. J Refract Surg. 2009 Jan;25(1):33-6. https://doi.org/10.3928/1081597X-20090101-06.

Ambrósio R Jr, Wilson S. LASIK vs LASEK vs PRK: advantages and indications. Semin Ophthalmol. 2003; 18: 2-10. https://doi.org/10.1076/soph.18.1.2.14074.

Pajic B, Vastardis I, Pajic-Eggspuehler B, et al. Femtosecond laser versus mechanical microkeratome-assisted flap creation for LASIK: a prospective, randomized, paired-eye study. Clin Ophthalmol. 2014 Sep 22;8:1883-9. https://doi.org/10.2147/OPTH.S68124

Fang L, Wang Y, Yang R, et al. Effects of the LASIK flap thickness on corneal biomechanical behavior: a finite element analysis. BMC Ophthalmol. 2020 Feb 24;20(1):67. https://doi.org/10.1186/s12886-020-01338-8.

Knorz MC. Flap and interface complications in LASIK. Curr Opin Ophthalmol. 2002 Aug;13(4):242-5. https://doi: 10.1097/00055735-200208000-00010

Ambrósio R Jr, Wilson SE. Complications of laser in situ keratomileusis: etiology, prevention, and treatment. J Refract Surg. 2001 May-Jun;17(3):350-79. https://doi.org/ 10.3928/1081-597X-20010501-09

Issa A, Hassany U. Femtosecond laser flap parameters and visual outcomes in laser in situ keratomileusis. J Cataract Refract Surg. 2011; 37: 665-74. https://doi.org/10.1016/j.jcrs.2010.10.049

Paula FH, Khairallah CG, Niziol LM, et al. Diffuse lamellar keratitis after laser in situ keratomileusis with femtosecond laser flap creation. J Cataract Refract Surg. 2012;38:1014-9. https://doi.org/10.1016/j.jcrs.2011.12.030

Xia LK, Yu J, Chai GR, et al. Comparison of the femtosecond laser and mechanical microkeratome for flap cutting in LASIK. Int J Ophthalmol. 2015;8:784-90. https://doi.org/ 10.3980/j.issn.2222-3959.2015.04.25

Moshirfar M, Gardiner JP, Schliesser JA, et al. Laser in situ keratomileusis flap complications using mechanical microkeratome versus femtosecond laser: retrospective comparison. J Cataract Refract Surg. 2010; 36: 1925-33. https://doi.org/10.1016/j.jcrs.2010.05.027.

Torky MA, Al Zafiri YA, Khattab AM. Visumaxfemtolasik versus Moria M2 microkeratome in mild to moderate myopia: efficacy, safety, predictability, aberrometric changes and flap thickness predictability. BMC Ophthalmol 2017;17:125-7. https://doi.org/10.1186/s12886-017-0520-5

Salomão MQ, Wilson SE. Femtosecond laser in laser in situ keratomileusis. J Cataract Refract Surg. 2010 Jun;36(6):1024-32. https://doi.org/10.1016/j.jcrs.2010.03.025/

Kim JH, Lee D, Rhee KI. Flap thickness reproducibility in laser in situ keratomileusis with a femtosecond laser: optical coherence tomography measurement. J Cataract Refract Surg. 2008 Jan;34(1):132-6. https://doi.org/10.1016/j.jcrs.2007.08.036

Parafita-Fernández A, Teus M. Femtosecond laser in situ keratomileusis flap creation. J Cataract Refract Surg. 2018 Oct;44(10):1297. https://doi.org/10.1016/j.jcrs.2010.03.025

Ju WK, Lee JH, Chung TY, et al. Reproducibility of LASIK flap thickness using the zeiss femtosecond laser measured postoperatively by optical coherence tomography. J Refract Surg. 2011 Feb;27(2):106-10. https://doi.org/10.3928/1081597X-20100428-04

Zhang J, Zhou Y, Zhai C, et al. Comparison of 2 femtosecond lasers for laser in situ keratomileusis flap creation. J Cataract Refract Surg. 2013 Jun;39(6):922-7. https://doi.org/10.1016/j.jcrs.2013.01.042

Rush SW, Rush RB. Optical Coherence Tomography-Guided Femtosecond LASIK in the Setting of Corneal Scarring. Clin Ophthalmol. 2021 Apr 20;15:1601-6. https://doi.org/10.2147/OPTH.S307191

Murakami Y, Manche EE. Comparison of intraoperative subtraction pachymetry and postoperative anterior segment optical coherence tomography of laser in situ keratomileusis flaps. J Cataract Refract Surg. 2011 Oct;37(10):1879-83. https://doi.org/10.1016/j.jcrs.2011.05.024

Downloads

Published

2023-09-30

How to Cite

Baasanjav, T., Davaatseren, U., Dambadarjaa, D., Jamyanjav, B., & Davaatseren, U. (2023). Assessment of Laser in Situ Keratomileusis Flap Predictability by Laser and Moria Microkeratome. Central Asian Journal of Medical Sciences, 9(3), 125–130. https://doi.org/10.24079/cajms.2023.09.003

Issue

Section

Articles