Assessment of Laser in Situ Keratomileusis Flap Predictability by Laser and Moria Microkeratome

Authors

  • Tsetsegjargal Baasanjav Department of Ophthalmology, School of Medicine, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia https://orcid.org/0009-0001-9843-1428
  • Uranchimeg Davaatseren Department of Ophthalmology, School of Medicine, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
  • Davaalkham Dambadarjaa Department of Epidemiology and Biostatistics, School of Public Health, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
  • Baasankhuu Jamyanjav Bolor Melmii Hospital, Ulaanbaatar, Mongolia
  • Uranchimeg Davaatseren Department of Ophthalmology, School of Medicine, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia

DOI:

https://doi.org/10.24079/cajms.2023.09.003

Keywords:

Coherence Tomography, Optical, Keratomileusis, Laser Therapy

Abstract

Objective: In the present study, we compared LASIK flap thickness predictability created by a FS laser versus a Moria microkeratome in Mongolian patients. Methods: A total of ninety-six candidates for the LASIK procedure were stratified into two groups: FS laser-assisted and MK flap creation. Flap thickness was determined at five points. The side-cut angle was measured in three directions at the margin interface. LASIK flap assessment was performed one month postoperatively by Spectralis anterior segment optical coherence tomography. Results: Ninety-five participants (190 eyes) were recruited; 190 eyes were stratified to the FS group and 78 eyes to the MK group. The FS group had relatively even flap configurations, and the MK group had meniscus-shaped flaps. Regarding CR-sphere and cylinder, there was significant difference between 2 groups. The mean cylinder was -1.216 ± 0.924 in FS group while it was -0.730 ± 0.738 in MK group. Similarly, the mean sphere was -3.635 ± 2.031 in FS-LASIK group and -2.984 ± 1.502 in MK-LASIK group. The side-cut architecture varied among the two groups. OCT-C and OCT1Temporal values were significantly different between two groups. Conclusion: Improving the predictability of LASIK flap thickness and morphology is significantly important.

Downloads

Download data is not yet available.
Abstract
65
PDF
87

References

Reinstein DZ, Archer TJ, Gobbe M. The history of LASIK. J Refract Surg. 2012 Apr;28(4):291-8. https://doi.org/10.3928/1081597X-20120229-01.

Bashir ZS, Ali MH, Anwar A, et al. Femto-lasik. The recent innovation in laser assisted refractive surgery. J Pak Med Assoc. 2017;67:609-15. https://pubmed.ncbi.nlm.nih.gov/28420926/

López-Montemayor P, Valdez-García JE, Loya-García D, et al. Safety, efficacy and refractive outcomes of LASIK surgery in patients aged 65 or older. Int Ophthalmol. 2018 Aug;38(4):1515-20. https://doi.org/10.1007/s10792-017-0614-3

Stonecipher K, Ignacio TS, Stonecipher M. Advances in refractive surgery: microkeratome and femtosecond laser flap creation in relation to safety, efficacy, predictability, and biomechanical stability. Curr Opin Ophthalmol. 2006 Aug;17(4):368-72. https://doi.org/10.1097/01.icu.0000233957.88509.2d

Kymionis GD, Portaliou DM, Tsiklis NS, et al. Thin LASIK flap creation using the SCHWIND Carriazo-Pendular microkeratome. J Refract Surg. 2009 Jan;25(1):33-6. https://doi.org/10.3928/1081597X-20090101-06.

Ambrósio R Jr, Wilson S. LASIK vs LASEK vs PRK: advantages and indications. Semin Ophthalmol. 2003; 18: 2-10. https://doi.org/10.1076/soph.18.1.2.14074.

Pajic B, Vastardis I, Pajic-Eggspuehler B, et al. Femtosecond laser versus mechanical microkeratome-assisted flap creation for LASIK: a prospective, randomized, paired-eye study. Clin Ophthalmol. 2014 Sep 22;8:1883-9. https://doi.org/10.2147/OPTH.S68124

Fang L, Wang Y, Yang R, et al. Effects of the LASIK flap thickness on corneal biomechanical behavior: a finite element analysis. BMC Ophthalmol. 2020 Feb 24;20(1):67. https://doi.org/10.1186/s12886-020-01338-8.

Knorz MC. Flap and interface complications in LASIK. Curr Opin Ophthalmol. 2002 Aug;13(4):242-5. https://doi: 10.1097/00055735-200208000-00010

Ambrósio R Jr, Wilson SE. Complications of laser in situ keratomileusis: etiology, prevention, and treatment. J Refract Surg. 2001 May-Jun;17(3):350-79. https://doi.org/ 10.3928/1081-597X-20010501-09

Issa A, Hassany U. Femtosecond laser flap parameters and visual outcomes in laser in situ keratomileusis. J Cataract Refract Surg. 2011; 37: 665-74. https://doi.org/10.1016/j.jcrs.2010.10.049

Paula FH, Khairallah CG, Niziol LM, et al. Diffuse lamellar keratitis after laser in situ keratomileusis with femtosecond laser flap creation. J Cataract Refract Surg. 2012;38:1014-9. https://doi.org/10.1016/j.jcrs.2011.12.030

Xia LK, Yu J, Chai GR, et al. Comparison of the femtosecond laser and mechanical microkeratome for flap cutting in LASIK. Int J Ophthalmol. 2015;8:784-90. https://doi.org/ 10.3980/j.issn.2222-3959.2015.04.25

Moshirfar M, Gardiner JP, Schliesser JA, et al. Laser in situ keratomileusis flap complications using mechanical microkeratome versus femtosecond laser: retrospective comparison. J Cataract Refract Surg. 2010; 36: 1925-33. https://doi.org/10.1016/j.jcrs.2010.05.027.

Torky MA, Al Zafiri YA, Khattab AM. Visumaxfemtolasik versus Moria M2 microkeratome in mild to moderate myopia: efficacy, safety, predictability, aberrometric changes and flap thickness predictability. BMC Ophthalmol 2017;17:125-7. https://doi.org/10.1186/s12886-017-0520-5

Salomão MQ, Wilson SE. Femtosecond laser in laser in situ keratomileusis. J Cataract Refract Surg. 2010 Jun;36(6):1024-32. https://doi.org/10.1016/j.jcrs.2010.03.025/

Kim JH, Lee D, Rhee KI. Flap thickness reproducibility in laser in situ keratomileusis with a femtosecond laser: optical coherence tomography measurement. J Cataract Refract Surg. 2008 Jan;34(1):132-6. https://doi.org/10.1016/j.jcrs.2007.08.036

Parafita-Fernández A, Teus M. Femtosecond laser in situ keratomileusis flap creation. J Cataract Refract Surg. 2018 Oct;44(10):1297. https://doi.org/10.1016/j.jcrs.2010.03.025

Ju WK, Lee JH, Chung TY, et al. Reproducibility of LASIK flap thickness using the zeiss femtosecond laser measured postoperatively by optical coherence tomography. J Refract Surg. 2011 Feb;27(2):106-10. https://doi.org/10.3928/1081597X-20100428-04

Zhang J, Zhou Y, Zhai C, et al. Comparison of 2 femtosecond lasers for laser in situ keratomileusis flap creation. J Cataract Refract Surg. 2013 Jun;39(6):922-7. https://doi.org/10.1016/j.jcrs.2013.01.042

Rush SW, Rush RB. Optical Coherence Tomography-Guided Femtosecond LASIK in the Setting of Corneal Scarring. Clin Ophthalmol. 2021 Apr 20;15:1601-6. https://doi.org/10.2147/OPTH.S307191

Murakami Y, Manche EE. Comparison of intraoperative subtraction pachymetry and postoperative anterior segment optical coherence tomography of laser in situ keratomileusis flaps. J Cataract Refract Surg. 2011 Oct;37(10):1879-83. https://doi.org/10.1016/j.jcrs.2011.05.024

Downloads

Published

2023-09-30

How to Cite

Baasanjav, T., Davaatseren, U., Dambadarjaa, D., Jamyanjav, B., & Davaatseren, U. (2023). Assessment of Laser in Situ Keratomileusis Flap Predictability by Laser and Moria Microkeratome. Central Asian Journal of Medical Sciences, 9(3), 125–130. https://doi.org/10.24079/cajms.2023.09.003

Issue

Section

Articles