Biophysical characterization of human serum albumin interaction with dapagliflozin: multi-spectroscopic and molecular docking study

Authors

DOI:

https://doi.org/10.5564/pmas.v65i01.4203

Keywords:

Dapagliflozin, human serum albumin, multi-spectroscopy, zeta-potential, molecular docking

Abstract

Human serum albumin (HSA) is the most abundant protein in human blood plasma and plays a crucial role in drug transport and pharmacokinetics. Dapagliflozin (DAPA), a sodium-glucose co-transporter 2 (SGLT2) inhibitor, is widely prescribed for the treatment of type 2 diabetes mellitus. In the present study, we employed a combination of multi-spectroscopic techniques, including fluorescence spectroscopy (three-dimensional, synchronous), UV-visible absorption spectroscopy, thermodynamic analysis, and molecular docking to investigate the interaction of dapagliflozin with HSA under physiological condition. The quenching mechanism of DAPA was determined to be dynamic through Stern-Volmer and modified Stern-Volmer analyses. The binding constants at 298 K, 303 K, 308 K were 0.52x104, 0.303x104 and 0.264x104 M-1, respectively. Thermodynamic analysis revealed that the binding process is spontaneous, driven primarily by hydrogen bonding and hydrophobic interactions at various temperatures. Synchronous fluorescence studies suggest that DAPA binding does not significantly alter the microenvironment around the tyrosine and tryptophan residues of HSA, implying that the binding sites are spatially distinct from these residues. Three-dimensional fluorescence studies reveal that the addition of DAPA to HSA affects changes in the micro-environment and conformation of HSA. UV-VIS spectroscopy confirmed the formation of the HSA-DAPA complex, characterized by spectral shifts in both peptide bond and aromatic amino acid regions, indicating alterations in the protein's secondary structure. The decrease in zeta potential upon DAPA binding suggests a change in the surface charge and potential conformational changes in HSA, which may influence its biological activity and interaction with other molecules. Molecular docking studies identified key amino acid residues involved in the binding of DAPA to HSA, primarily through hydrophobic and hydrogen bond interactions.

Downloads

Download data is not yet available.
Abstract
77
PDF
50

Author Biography

Tuvshinjargal Duurenjargal, Department of Biology, School of Arts and Sciences, National University of Mongolia, Ulaanbaatar, Mongolia

Radiation biophysics laboratory, Institute of Physics and Technology, Mongolian Academy of Sciences, Ulaanbaatar, Mongolia

References

1. Wu Y, Ding Y, Tanaka Y, Zhang W. Risk factors contributing to type 2 diabetes and recent advances in the treatment and prevention. Vol. 11, International journal of medical sciences. 2014. p. 1185–200. https://doi.org/10.7150/ijms.10001.

2. Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022 Jan 1;183. https://doi.org/10.1016/j.diabres.2021.109119.

3. Shah N. K., Deeb W. E., Choksi R, Epstein B. J. Dapagliflozin: A Novel Sodium-Glucose Cotransporter Type 2 Inhibitor for the Treatment of Type 2 Diabetes Mellitus [Internet]. Available from: https://caesar.sheridan.com/reprints/redir. https://doi.org/10.1002/PHAR.1010.

4. List J. F., Whaley J. M. Glucose dynamics and mechanistic implications of SGLT2 inhibitors in animals and humans. Vol. 79, Kidney International. 2011. https://doi.org/10.1038/ki.2010.512.

5. Dingemanse J, Appel-Dingemanse S. Integrated Pharmacokinetics and Pharmacodynamics in Drug Development. Vol. 46, Clin Pharmacokinet. 2007. https://doi.org/10.2165/00003088-200746090-00001.

6. Reichenwallner J, Michler S, Schwieger C, Hinderberger D. Human Serum Albumin Loaded with Fatty Acids Reveals Complex Protein-Ligand Thermodynamics and Boleadora-Type Solution Dynamics Leading to Gelation. Journal of Physical Chemistry B. 2025 Apr 10; https://doi.org/10.1021/acs.jpcb.4c08717.

7. Ashraf S, Qaiser H, Tariq S, Khalid A, Makeen H.A., Alhazmi H.A., et al. Unraveling the versatility of human serum albumin – A comprehensive review of its biological significance and therapeutic potential. Vol. 6, Current Research in Structural Biology. Elsevier B.V.; 2023. https://doi.org/10.1016/j.crstbi.2023.100114.

8. Yamasaki K, Chuang V. T. G., Maruyama T, Otagiri M. Albumin-drug interaction and its clinical implication. Vol. 1830, Biochimica et Biophysica Acta - General Subjects. Elsevier B.V.; 2013. pp. 5435–43. https://doi.org/10.1016/j.bbagen.2013.05.005.

9. Lee P, Wu X. Review: Modifications of Human Serum Albumin and Their Binding Effect. https://doi.org/10.2174/1381612821666150302115025.

10. Ge F, Chen C, Liu D, Han B, Xiong X, Zhao S. Study on the interaction between theasinesin and human serum albumin by fluorescence spectroscopy. J Lumin. 2010 Jan;130(1):168–73. https://doi.org/10.1016/j.jlumin.2009.08.003.

11. Tayeh N, Rungassamy T, Albani J.R. Fluorescence spectral resolution of tryptophan residues in bovine and human serum albumins. J Pharm Biomed Anal. 2009 Sep 8;50(2):107–16. https://doi.org/10.1016/j.jpba.2009.03.015.

12. Wang P. Y., Yang C. T., Chu L. K. Differentiating the protein dynamics using fluorescence evolution of tryptophan residue(s): A comparative study of bovine and human serum albumins upon temperature jump. Chem Phys Lett. 2021 Oct 16;781. https://doi.org/10.1016/j.cplett.2021.138998.

13. Abdelaziz M.A., Shaldam M, El-Domany R.A., Belal F. Multi-Spectroscopic, thermodynamic and molecular dynamic simulation studies for investigation of interaction of dapagliflozin with bovine serum albumin. Spectrochim Acta A Mol Biomol Spectrosc. 2022 Jan 5;264. https://doi.org/10.1016/j.saa.2021.120298.

14. Pattanawongsa A, Chau N, Rowland A, Miners J. O. Inhibition of human UDP-glucuronosyltransferase enzymes by canagliflozin and dapagliflozin: Implications for drug-drug interactions. Drug Metabolism and Disposition. 2015 Oct 1;43(10):1468–76. https://doi.org/10.1124/dmd.115.065870.

15. Mohamady A, Shahlaei M, Akbari V, Goicoechea H. C., Jalalvand A. R. Chemometrics-assisted multi-instrumental techniques for investigation of interactions of dapagliflozin with normal and glycated human serum albumin: Application to exploiting second-order advantage for determination of glycated human serum albumin as a biomarker for controlling diabetes. Microchemical Journal. 2021 Aug 1;167. https://doi.org/10.1016/j.microc.2021.106313.

16. Hashempour S, Shahabadi N, Adewoye A, Murphy B, Rouse C, Salvatore B .A., et al. Binding Studies of AICAR and Human Serum Albumin by Spectroscopic, Theoretical, and Computational Methodologies. Molecules. 2020 Nov 19;25 (22). https://doi.org/10.3390/molecules25225410.

17. Tabassum S, Al-Asbahy W. M., Afzal M, Arjmand F. Synthesis, characterization and interaction studies of copper based drug with Human Serum Albumin (HSA): Spectroscopic and molecular docking investigations. J Photochem Photobiol B. 2012 Sep 3;114:132–9. https://doi.org/10.1016/j.jphotobiol.2012.05.021.

18. Ganorkar K, Mukherjee S, Singh P, Ghosh S. K. Stabilization of a potential anticancer thiosemicarbazone derivative in Sudlow site I of human serum albumin: In vitro spectroscopy coupled with molecular dynamics simulation. Biophys Chem. 2021 Feb 1;269. https://doi.org/10.1016/j.bpc.2020.106509.

19. Sekowski S, Olchowik-Grabarek E, Wieckowska W, Veiko A, Oldak L, Gorodkiewicz E, et al. Spectroscopic, Zeta-potential and Surface Plasmon Resonance analysis of interaction between potential anti-HIV tannins with different flexibility and human serum albumin. Colloids Surf B Biointerfaces. 2020 Oct 1;194. https://doi.org/10.1016/j.colsurfb.2020.111175.

20. Sun X, Bi S, Wu J, Zhao R, Shao D, Song Z. Multispectral and molecular docking investigations on the interaction of primethamine/trimethoprim with BSA/HSA. Vol. 38, Journal of Biomolecular Structure and Dynamics. Taylor and Francis Ltd.; 2020. pp. 934–42. https://doi.org/10.1080/07391102.2019.1588785.

21. Amir M, Qureshi M.A., Javed S. Biomolecular interactions and binding dynamics of tyrosine kinase inhibitor erdafitinib, with human serum albumin. J Biomol Struct Dyn. 2021;39(11):3934–47. https://doi.org/10.1080/07391102.2020.1772880.

22. MacIązek-Jurczyk M, Sułkowska A, Równicka-Zubik J. Alteration of methotrexate binding to human serum albumin induced by oxidative stress. Spectroscopic comparative study. Spectrochim Acta A Mol Biomol Spectrosc. 2016 Jan 5;152:537–50. https://doi.org/10.1016/j.saa.2014.12.113.

23. Fan Y, Zhang S, Wang Q, Li J, Fan H, Shan D. Investigation of the interaction of pepsin with ionic liquids by using fluorescence spectroscopy. Appl Spectrosc. 2013 Jun;67(6):648–55. https://doi.org/10.1366/12-06793.

24. Suryawanshi V. D., Anbhule P.V ., Gore A. H., Patil S. R., Kolekar G. B. A spectral deciphering the perturbation of model transporter protein (HSA) by antibacterial pyrimidine derivative: Pharmacokinetic and biophysical insights. J Photochem Photobiol B. 2013 Jan 5;118:1–8. https://doi.org/10.1016/j.jphotobiol.2012.09.010.

25. Atarodi Shahri P, Sharifi Rad A, Beigoli S, Saberi M.R, Chamani J. Human serum albumin–amlodipine binding studied by multi-spectroscopic, zeta-potential, and molecular modeling techniques. Journal of the Iranian Chemical Society. 2018 Jan 1;15(1):223–43. https://doi.org/10.1007/s13738-017-1226-6.

26. Kandandapani S, Kabir M. Z., Ridzwan N. F. W., Mohamad S. B., Tayyab S. Biomolecular interaction mechanism of an anticancer drug, pazopanib with human serum albumin: a multi-spectroscopic and computational approach. J Biomol Struct Dyn. 2022;40(18):8312–23. https://doi.org/10.1080/07391102.2021.1911850.

27. Kabir M.Z., Ghani H, Mohamad S.B., Alias Z, Tayyab S. Interactive association between RhoA transcriptional signaling inhibitor, CCG1423 and human serum albumin: Biophysical and in silico studies. J Biomol Struct Dyn. 2018 Jul 27;36(10):2495–507. https://doi.org/10.1080/07391102.2017.1360207.

28. Amani N, Reza Saberi M, Khan Chamani J. Investigation by Fluorescence Spectroscopy, Resonance Rayleigh Scatter-ing and Zeta Potential Approaches of the Separate and Simultaneous Binding Effect of Paclitaxel and Estradiol with Human Serum Albumin. Vol. 18, Protein & Peptide Letters. 2011. https://doi.org/10.2174/092986611796011473.

29. Abdollahpour N, Soheili V, Saberi M. R., Chamani J. Investigation of the Interaction Between Human Serum Albumin and Two Drugs as Binary and Ternary Systems. Eur J Drug Metab Pharmacokinet. 2016 Dec 1;41(6):705–21. https://doi.org/10.1007/s13318-015-0297-y.

30. Zhang S, Chen X, Ding S, Lei Q, Fang W. Unfolding of human serum albumin by gemini and single-chain surfactants: A comparative study. Colloids Surf A Physicochem Eng Asp. 2016 Apr 20;495:30–8. https://doi.org/10.1016/j.colsurfa.2016.01.051.

31. Salo-Ahen O. M. H, Alanko I, Bhadane R, Alexandre A. M, Honorato R. V, Hossain S, et al. Molecular dynamics simulations in drug discovery and pharmaceutical development. Vol. 9, Processes. MDPI AG; 2021. pp. 1–63. https://doi.org/10.3390/pr9010071.

Downloads

Published

2025-03-31

How to Cite

Duurenjargal, T., Badamkhatan, T., Luvsanbat, K., Tsogbadrakh, M.-O., & Enerelt, U. (2025). Biophysical characterization of human serum albumin interaction with dapagliflozin: multi-spectroscopic and molecular docking study. Proceedings of the Mongolian Academy of Sciences, 65(01), 13–28. https://doi.org/10.5564/pmas.v65i01.4203

Issue

Section

Articles