Equilibrium thermodynamic properties of binary hard-sphere mixtures from integral equation theory

Authors

DOI:

https://doi.org/10.5564/pmas.v65i01.4202

Keywords:

Ornstein-Zernike equation, Martynov-Sarkisov closure, Pair correlation functions

Abstract

The binary additive hard-sphere mixtures have been studied by the Ornstein-Zernike integral equation coupled with the Martynov-Sarkisov (MS) closure approximation. Virial equation of state is computed in the MS approximation. The excess chemical potential for the mixture is evaluated with a closed-form expression based on correlation functions. The excess Helmholtz free energy is obtained using the Euler relation of thermodynamics. Moreover, these thermodynamic quantities are obtained by the Boublík-Mansoori-Carnahan-Starling-Leland (BMCSL) formulas. Our findings for pressure and excess chemical potential for the number of binary sets of the mixtures from the MS approximation show good agreements with those findings obtained by the BMCSL formulas and available data in literature, having a maximum deviation of 5% for a packing fraction up to 0.5. The maximum deviation of the excess free energy obtained for the mixtures is shown to be ~16% for a packing fraction of 0.5. Note that this work presents an initial calculation of an excess chemical potential of the system in the MS approximation.

Downloads

Download data is not yet available.
Abstract
84
PDF
51

References

1. Hansen, J. P., McDonald, I. R., Theory of Simple Liquids 4th ed. (Academic Press, New York), 2006.

2. McQuarrie, D. A., Statistical Mechanics (Harper & Row, New York), 1976.

3. Heno, Y., Regnaut, C., Hard sphere colloidal suspension of macro particles in a multicomponent solvent, J. Chem. Phys. Vol. 95, 9204,1991. https://doi.org/10.1063/1.461201.

4. Pagonabarraga, I., Cates, M. E., Ackland, G.J., Local Size Segregation in Polydisperse Hard Sphere Fluids, Phys. Rev. Lett. Vol.84, 911, 2000. https://doi.org/10.1103/PhysRevLett.84.911

5. Alder, B. J., Studies in Molecular Dynamics. III. A Mixture of Hard Spheres, J. Chem. Phys. Vol. 40, 2724, 1964. https://doi.org/10.1063/1.1725587.

6. Rotenberg, A., Monte Carlo equation of state for a mixture of hard spheres, J. Chem. Phys. Vol. 43, 4377, 1965. https://doi.org/10.1063/1.1696700.

7. Lebowitz, J. L., Exact solution of generalized Percus-Yevick equation for a mixture of hard spheres, Phys. Rev. Vol. 133, A895, 1964. https://doi.org/10.1103/PhysRev.133.A895.

8. Mansoori, G. A., Carnahan, N. F., Starling, K. E., Leland, T. W. Jr., Equilibrium thermodynamic properties of the mixture of hard spheres, J. Chem. Phys. Vol. 54, 1523, 1971. https://doi.org/10.1063/1.1675048.

9. Percus, J. K., Yevick, G. J., Analysis of classical statistical mechanics by means of collective coordinates, Phys. Rev. Vol. 110, 1, 1958. https://doi.org/10.1103/PhysRev.110.1.

10. Barošová, M., Malijevský, A., Labík, S., Smith, W.R., Computer simulation of the chemical potentials of binary hard sphere mixtures, Mol. Phys. Vol. 87, 423, 1996. https://doi.org/10.1080/00268979600100281.

11. Santos, A., Rohrmann, R. D., Chemical-potential route for multicomponent fluids, Phys. Rev. E, Vol. 87, 052138, 2013. https://doi.org/10.1103/PhysRevE.87.052138.

12. Heyes, D. M., Santos, A., Chemical potential of a test hard sphere of variable size in hard-sphere fluid mixtures, J. Chem. Phys. Vol. 148, 214503, 2018. https://doi.org/10.1063/1.5037856.

13. Santos, A., Yuste, S.B., de Haro M.L., Structural and thermodynamic properties of hard-sphere fluids, J. Chem. Phys. Vol. 153, 120901, 2020. https://doi.org/10.1063/5.0023903.

14. Ballone, P., Pastore, S., Galli, G., Gazzillo, D., Additive and non-additive hard sphere mixtures: Monte Carlo simulation and integral equation results, Mol. Phys. Vol. 59, 275, 1986. https://doi.org/10.1080/00268978600102071.

15. Schmidt, A.B., Freezing of simple fluids in terms of the Ornstein-Zernike equation: Soft-sphere fluids and binary hard-sphere mixtures, Phys. Rev. A Vol. 45, 7636, 1992. https://doi.org/10.1103/PhysRevA.45.7636.

16. Malijevský, A., Barošová, W., Smith, R., Integral equation and computer simulation study of the structure of additive hard-sphere mixtures, Mol. Phys. Vol. 91, 65, 1997. https://doi.org/10.1080/002689797171742.

17. Martynov, A. G., Sarkisov, G. N., Exact equations and the theory of liquids. V, Mol. Phys. Vol. 49, 1495, 1983. https://doi.org/10.1080/00268978300102111.

18. Boublík, T., Hard-sphere equation of state, J. Chem. Phys. Vol. 53, 471, 1970. https://doi.org/10.1063/1.1673824.

19. Sarkisov, G.N., J. Chem. Phys. Vol. 119, 373, 2003. https://doi.org/10.1063/1.1576373.

20. Tsednee, Ts., Luchko, T., Closure for the Ornstein-Zernike equation with pressure and free energy consistency, Phys. Rev. E, Vol. 99, 032130, 2019. https://doi.org/10.1103/PhysRevE.99.032130/

21. Tsednee, B., Tsednee, Ts., Khinayat, Ts., An excess chemical potential for binary hard-sphere mixtures from integral equation theory, Defect and Diffusion Forum, Vol. 423, 17, 2023. https://doi.org/10.4028/p-o48rlp/

22. Tsednee, B., Tsednee, Ts., Khinayat, Ts., An integral equation approach for binary hard-sphere mixture, Sci. trans.-Phys., Natl. Univ. Mongolia, Vol. 33, 30, 2022.

23. Kirkwood, J. G., Statistical mechanics of fluid mixtures, J. Chem. Phys. Vol. 3, 300, 1935. https://doi.org/10.1063/1.1749657.

24. Kirkwood, J. G., Statistical Mechanics of Liquid Solutions, Chem. Rev. Vol. 19, 275, 1936. https://doi.org/10.1021/cr60064a007.

Downloads

Published

2025-03-31

How to Cite

Tsednee, B., Tsednee, T., & Khinayat, T. (2025). Equilibrium thermodynamic properties of binary hard-sphere mixtures from integral equation theory. Proceedings of the Mongolian Academy of Sciences, 65(01), 1–12. https://doi.org/10.5564/pmas.v65i01.4202

Issue

Section

Articles