Magnetospheric response on impact of solar wind diamagnetic structures borne by eruptive prominence
DOI:
https://doi.org/10.5564/pmas.v64i02.3648Keywords:
eruptive prominence, diamagnetic structure of eruptive prominence, saw-tooth substorm, double auroral oval, Pi2-3geomagnetic pulsationsAbstract
We address the sequence of Sun-to-Earth phenomena, that enables to study the mechanism for geoefficiency of eruptive prominences propagating from the Sun inside coronal mass ejections (CMEs). An eruptive prominence ejected in the solar wind (SW) moves at the SW velocity Earthward like adiamagnetic structure of eruptive prominence (DSEP).The key feature of the latter is a largesharp plasma concentration jump N inside the DSEP at a simultaneous sharp drop in the interplanetary magnetic field (IMF) modulus B. It is the anti-correlation between the N and B profiles in DSEP, due to which its contact with the magnetosphere may lead not only to magnetosphere compression, but also to penetration of DSEP substance into the magnetosphere. The duration of the magnetospheric disturbance (in the form of dayside auroras), global increase in the current systems, charged particle flux enhancement in the radiation belts, and generation of the irregular Pi2-3 oscillations aredetermined by the DSEP size. We present statistical investigations into DSEPs observed in different years of solar activity and builta qualitative modelfor DSEP geoefficiency.
Downloads
717
References
Burlaga L. Microscale structure in the interplanetary medium. Solar Phys. 1968. No. 4. pp. 67-98. https://doi.org/10.1007/BF00146999
Burlaga L., Sitteler E, Mariani F., Schwenn R. Magnetic loop behind an interplanetary shock: Voyager, Helios and IMP-8 observations. J. Geophys. Res. 1981. V. 86, no. 8. pp. 6673-6684, https://doi.org/10.1029/JA086iA08p06673
Burton R. K., Mcpherron R. L., Russel C. T. An empirical relationship between interplanetary conditions and Dst. J. Geophys. Res. 1975, V. 80, No 31, pp. 4204 – 4214, https://doi.org/10.1029/JA080i031p04204
Cai X., Clauer C. R., Ridley A. J. Statistical analysis of ionospheric potential patterns for isolatedsubstorms and sawtooth events. Ann. Geophys., 2006, V. 24, pp. 1977-1991, https://doi.org/10.5194/angeo-24-1977-2006
Echim M. M., Lemaire J. F. Laboratory and numerical simulations of the impulsive penetration mechanism. Space Sci. Rev., 2000, V. 92. pp. 565-601, https://doi.org/10.1023/A:1005264212972
Ermolaev Yu. I., Nikolaeva N. S., Lodkina I. G., and Ermolaev M. Yu. Catalog of large-scale phenomena in the solar wind over 1976-2000 Kosmicheskiye Issledovaniya (Space Research). 2009. V. 47, No. 2. pp. 99-113., in Russian.
Eselevich M. V, and Eselevich V. G.. Sporadic plasma flows and their sources during extreme solar activity 2003 October 26 through 2003 November 6. Kosmicheskiye Issledovaniya (Space Research). 2004. V. 42, No. 6. pp. 595-607, in Russian.
Gjerloev J. W. The SuperMAG data processing technique. J. Geophys. Res. 2012, vol. 117, iss. A9, A09213. https://doi.org/10.1029/2012JA017683
Grechnev V. V., Lesovoi S. V., Kochanov A. A., et al. Multi-instrument view on solar eruptive events observed with the Siberian Radioheliograph: From detection of small jets up to development of a shock wave and CME. J. Atmos. and Solar-Terr. Phys. 2018. V 174. pp. 46-65. https://doi.org/10.1016/j.jastp.2018.04.014
Grechnev V. V., Uralov A. M., Kochanov A. A., et al. A tiny eruptive filament as a flux-rope progenitor and driver of a large-scale CME and wave. Solar Phys. 2016. V. 291. pp. 1173-1208. https://doi.org/10.1007/s11207-016-0888-z
Guglielmi A. V., and V. A. Troitskaya. Geomagnitnyye pul'satsii i dignostika magnitosfery (Geomagnetic pulsations and magnetosphere diagnostics). Мoscow, Nauka Publishers, 1973. P. 208., in Russian.
Kalegaev V. V., Vlasova N. A., and Peng Zh.. Magnetosphere dynamics during geomagnetic storms. Kosmicheskiye Issledovaniya (Space Research). 2015, V. 53, No. 2. pp. 105-117., in Russian.
Katsavriasi C., Rapits S., Daglis L. A. Karlsson T., Georgiou N., Balasis G. On the generation of Pi2 pulsations due to plasma flow patterns around magnetosheath jets. Geophys. Res. Lett. 2021. V. 48, e2021GL093611. https://doi.org/10.1029/2021GL093611
Kepko L., McPherron R. L., Amm O., Apatenkov S., Baumjohann W., Birn J., Lester M., Nakamura R., Pulkkinen T. I., Sergeev V. Substorm current wedge revisited. Space Sci. Rev. 2015. V. 190, pp. 1-46. https://doi.org/10.1007/s11214-014-0124-9
Kim K. H., Catell C. A., Lee D. H., Takahashi K., et.al. Magnetospheric responsesto suddem and quasiperiodic solar wind variations. J. Geophys. Res.2002, V. 107, No. A11,1406; https://doi.org/10.1029/2002JA009342
Klibanova Yu. Yu., Mishin V. V, Tsegmed B. and Moiseev A. V. Properties of daytime long-period pulsations during magnetospheric storm commencement. Geomagnetism and Aeronomy. 2016, V. 56, No. 4, pp. 426-440, https://doi.org/10.1134/S0016793216040071
Kozyra J. U., Liemohn M. W., Cattell C. et al. Solar filament impact on 21 January 2005: Geospace consequences. J. Geophys. Res. Space Physics, V. 119, pp. 5401-5448, https://doi.org/10.1002/2013JA019748
Mishiin V. V., Klibanova Y. Y.,Medvedev A. V., Mikhalev, A. V., Penskikh , Y. V., Marchuk R. A. Bursts geomagnetic pulsations and night atmosphere airglow caused by solar wind pressure changes during magnetosphere storm. Doklady Earth Sci. V. 504(1), pp. 390-394, https//doi.org/10.1134/S1028334X22060125
Lemaire J. Plasmoid motion across a tangential discontinuity (with application to the magnetopause). J. Plasma Phys. 1985. Vol. 33, No. 3. pp. 425-436, https://doi.org/10.1017/S0022377800002592
Nishida A. Geomagnitnyy Diagnoz Magnitosfery (Geomagnetic Diagnosis of the Magnetosphere). Moscow: Mir Publishers, 1980. P. 300, in Russian
O’Brien, McPherron R. L., An empirical phase space analysis of ring current dynamics: Solar wind control of injection and decay J. Geophys. Res. 2000, V. 105, No. A4, pp. 7707 – 7719, https://doi.org/10.1029/1998JA000437
Parkhomov V. A, Eselevich V. G., Eselevich M. V., Dmitriev A. V., and Vedernikova T. I.. Diamagnetic plasmoids as components of the "slow" solar wind diamagnetic structures, and their effect on the Earth magnetosphere. Solnechno-Zemnaya Fizika (Solar-terrestrial physics). 2019. V. 5. No. 4, pp. 42-54. https://doi.org/10.12737/szf-54201905
Parkhomov V. A, Eselevich V. G., Eselevich M. V., Dmitriev A. V., Suvorova A. V., Khomutov S.Yu., Tsegmed B., and Tero Raita. Magnetospheric response to a coupling with a diamagnetic structure of the sporadic solar wind. Solnechno-Zemnaya Fizika (Solar-terrestrial physics). 2021. V. 7, No. 3. pp. 12-30. https://doi.org/10.12737/szf-73202102
Parkhomov V. A, Borodkova N. L., Eselevich V. G., Eselevich M. V., and Zastenker G. N.. Dramatic changes in the plasma concentration within the sporadic solar wind and their effect on the Earth magnetosphere. Kosmicheskiye Issledovaniya (Space Research). 2015. V. 53, No. 5. pp. 1-12. DOI: 10.7868/S002342061505009X, in Russian.
Parkhomov V. A, Borodkova N. L., Eselevich V. G., Eselevich M. V., Dmitriev A.V. , and Chilikin V .E.. Features of the impact of the solar wind diamagnetic structure on Earth’s magnetosphere. Solar-Terrestrial Physics. 2017. Vol. 3, No. 4, pp. 44–57. https://doi.org/10.12737/szf-34201705
Partamies N., Pulkkinen T. I., McPherron R. L., McWilliams K., Bryant C. R., Tanskanen E., Singer H.J ., Reeves G. D., Thomsen M. F. Statistical survey on sawtooth events, SMCs and isolated substorms. Adv. Space Res. 2009. V. 44, No 4, pp. 376-384. https://doi.org/10.1016/j.asr.2009.03.013
Schwenn R., Dal Lago A., Huttunen E., Gonzalez W. D. The association of coronal mass ejections with their effects near the Earth. Ann. Geophys. 2005. V. 23. No 3, pp. 1033-1059. https://doi.org/10.5194/angeo-23-1033-2005
Torr M. R., Torr D. G., Zukic M., Johnson R. B., J. Ajello, Banks P., et al. A far ultraviolet imager for the International Solar-Terrestrial Physics Mission. Space Sci. Rev. 1995. V. 71. pp. 329-383, https://doi.org/10.1007/BF00751335
Troshichev O., Stauning P., Liou K., Reeves G. Saw-tooth substorms: inconsistency of repetitive bay-like magnetic disturbances with behavior of aurora. Adv. Space Res. 2011. V. 47. Iss. 4, pp. 702-709. https://doi.org/10.1016/j.asr.2010.09.026
Yumoto K. and the MAGDAS Group. MAGDAS project and its application for space weather ILWS WORKSHOP - 2006. GOA, February 19-24, 2006. pp. 1-7.
Zhou X. Y., Tsurutani B. T. Rapid intensification and propagation of the dayside aurora: Large-scale interplanetary pressure pulses (fast shocks). Geophys. Res. Lett. 1999. V. 26, iss. 8. pp. 1097-1100. https://doi.org/10.1029/1999GL900173.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Parkhomov Vladimir Alexandrovich, Eselevich Victor Grigorieivich, Tsegmed Battuulai
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright on any research article in the Proceedings of the Mongolian Academy of Sciences is retained by the author(s).
The authors grant the Proceedings of the Mongolian Academy of Sciences a license to publish the article and identify itself as the original publisher.
Articles in the Proceedings of the Mongolian Academy of Sciences are Open Access articles published under a Creative Commons Attribution 4.0 International License CC BY.
This license permits use, distribution and reproduction in any medium, provided the original work is properly cited.