Study on the mycorrhizal structure of common plants and rhizosphere AMF diversity of different plant communities in Central Province, Mongolia


  • Munkhzul Tsetsegmaa Laboratory of Plant Introduction and Genetic Resource, Botanic Garden and Research Institute, Mongolian Academy of Sciences, Ulaanbaatar, Mongolia
  • Lumeng Chao Key laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Huhhot, .P.R. China
  • Yuying Bao Key laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Huhhot, .P.R. China



Central province, AM fungi, mycorrhizal structure, biodiversity


With the dual destruction cased by man-made activities and natural causes, the biodiversity and ecosystem function of the prairie are reducing rapidly, which are manifest in such phenomenon as grassland desertification, sharp reduction in wetland, soil quality degradation, erosion of soil by wind, rain and watersheds. This condition restricts the development level of Mongolia's financial status and production forces, and so the protection and utilization of biodiversity resources are extremely important and harbor no delay. Arbuscular mycorrhizal fungi (AMF) has a broad distribution and species diversity, it also has very important functions of maintaining material circulation in ecosystems, improving ecosystem productivity, and ensuring ecological restoration. We selected different plant communities and the common plants in the Tuv aimag (Central province) of Mongolia to study the correlation between species diversity, genetic diversity and AM fungi distribution with physical and chemical properties of soil.


Download data is not yet available.
PDF 16


Frank, A. B. (1985). Über die auf Wurzel symbiose beruhende Ernährung gewisser Bäume durch unterirdische Pilze. Berichte der Deutschen Botanischen Gesellschaft. Plant biology. Volume 3. Issue 4.

Bucholltz, F. (1912). Beiträge zur Kenntnis der Gattung Endogone Link. Beih. Zum Botan. Centr.Abl. 29 (2): 147-225.

Bao Meili (2009). The diversity and Ecological Distribution of AM Fungi in Desert Biological soil. Inner Mongolia Universiity.

Malloch, D. W, Pirozynski, K. A., Raven, P. H. (1980). Ecological and evolutionary significance of mycorrhizal symbioses in vascular plants a review. Proceedings of the national academy of sciences of the United States of America. 77(4):2113-8.

Augé, R. M. (2001). Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza, 11(1):3-42.

Yun Chen, Lai Yequ, Ke Mingma Xi Yu Yang. (2016). The community composition of arbuscular mycorrhizal fungi in the rhizosphere of Bauhinia faberi var. microphylla in the dry valley of Minjiang river. Mycosystema. 35(1):39-51.

Yue H., Liu Y. (2015). Research progress in the process and mechanism of arbuscular mycorrhizal fungi colonizing roots. Hubei agricultural sciences.

Dickson S. (2004). The Arum–Paris continuum of mycorrhizal symbioses. New phytologist, 163(1):187-200.

Oehl F., Seiverding Eward., Javier Palenzuela., Kurt Ineichen & Gladstone Alves da Sila (2011). Advence in Glomeromycota taxonomy and classification. IMA fungus volume 2 No2: 191-199.

Redecker D., Schüssler A., Stockinger H., Sidney L., Stümler., Joseph Morton, B., & Walker Ch. (2013). An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza. 23(7):515-531.

Hu, J., Lin X., Wang J., (2010). Arbuscular mycorrhizal fungus enhances P acquisition of wheat (Triticum aestivum L.) in a sandy loam soil with long-term inorganic fertilization regime. Applied microbiology &biotechnology, 88(3):781-787.

Abdel, Latef A.A. H. (2014). Miransari M. The role of arbuscular mycorrhizal fungi in alleviation of salt stress. Use of microbes for the alleviation of soil stresses. Vol: 2:23-38.

Camprubí, A., Calvet, C. Cabot, P. (2014). Arbuscular mycorrhizal fungi associated with psammophilic vegetation in mediterranean coastal sand dunes. Iforest biogeosciences & forestry. 7(1):96.

Porcel, R, Aroca, R., Ruizlozano, J M. (2012). Salinity stress alleviation using arbuscular mycorrhizal fungi a review. Agronomy for sustainable development. 32(1):181-200.

Wang, H., Li., H. B. (2010). Study on in situ bioremediation of polycyclic aromatic hydrocarbon contaminated farmland soil. Advanced materials research,610-613(6):1359-1363.

Vierheilig H, Garciagarrido, J M, Wyss, U. (2000). Systemic suppression of mycorrhizal colonization of barley roots already colonized by AM fungi. Soil biology & biochemistry. 32 (5):589-595.

Mcgonigle, T P. Miller, M H. Evans, D G. (2010) A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New phytologist, 115(3):495-501.

Schüßler, A. Walker, C. (2010). A species list with new families and new genera. The Glomeromycota.

Smith, S E, David, Read F. (2008). Mycorrhizal symbiosis (Third Edition).

Morton, J B. (1995). Taxonomic and phylogenetic divergence among five Scutellospora species based on comparative developmental sequences. Mycologia. 87(1):127-137.

Grubov V.I. (1982.) Key to the Vascular plants of Mongolia. Ulaanbaatar. 441.

Ulziikhutag, N. (1985). Key to the hay pasture plants of Mongolia. Ulaanbaatar. 518.

Zhao, Yizhi (2001). seconf edition. Journal of Inner Mongolia University. 32(5): 543-545.<2166::AID-ANIE2166>3.0.CO;2-C

Zhao, Yizhi. (2014). Key of Inner Mongolian Vascular Plants. Science.

Flora of Innner Mongolian(Second)Vol. 4(1993). Inner Mongolian Huhhot.1-908.

Smith, F.A., Smith, S.E. (1997). Structural diversity in (vesicular) arbuscular mycorrhizal symbioses. New phytologist. 137(3): 373-388

Bai, G., Bao Y. Y., Du G.X and Q.Y.L. (2013). Arbuscular mycorrhizal fungi associated with vegetation and soil parameters under rest grazing management in a desert steppe ecosystem. Mycorrhiza, 23(4):289.

Wang, B. Qiu, YL. (2006). Phylogenetic distribution and evolu- tion of mycorrhizas in land plants. Mycorrhiza. 16:299–363

Helgason, T. Fitter, A. Young, J. (1999). Molecular diversity of arbuscular mycorrhizal fungi colonising hyacinthoides non scripta (bluebell) in a seminatural woodland. Molecular ecology. 8(4): 659-666

Kubota, M. Mcgonigle, TP. Hyakumachi, M. (2005). Co-occurrence of Arum-and Paris-type morphologies of arbuscular mycorrhizae in cucumber and tomato. Mycorrhiza. 15:73-77

Matekwor, Ahulu E. Gollotte, A. Gianinazzi-Pearson V. Nonaka M. (2006). Cooccurring plants forming distinct arbuscular mycorrhizal morphologies harbor similar AM fungal species.Mycorrhiza. 17:37-49

Cavagnaro, TR. Smith, FA. Lorimer, MF. Haskard, KA. Ayling SM. Smith SE. (2001). Quantitative development of paris-type arbuscular mycorrhizas formed between asphodelus fistulosus and Glomus coronatum. New phytology. 149:105-113 8137.2001.00001.x

Sannazzaro, A. I. Ruiz, Q. A. Alberto, E. Menendez, A. B. (2004). Presence of didderent arbuscular mycorrhizal infection patterns in roots of lotus glaber plants growing in the Salado river basin. Mycorrhiza. 14:139-142




How to Cite

Tsetsegmaa, M., Chao, L., & Bao, Y. (2023). Study on the mycorrhizal structure of common plants and rhizosphere AMF diversity of different plant communities in Central Province, Mongolia. Proceedings of the Mongolian Academy of Sciences, 62(04), 28–38.