Impacts of operating conditions on specific cake resistance in dead-end microfiltration process

Authors

  • Natsagdorj Khaliunaa Beijing Key Laboratory for Green Catalysis and Separation, School of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, P.R. China https://orcid.org/0000-0001-6914-2128
  • Wang Zhan Beijing Key Laboratory for Green Catalysis and Separation, School of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, P.R. China https://orcid.org/0000-0003-3328-6423
  • Xi Wang Faculty of Humanities and Social Sciences, Macao Polytechnic University, Macao, PR China https://orcid.org/0000-0001-9971-4748
  • Tungalagtamir Bold Laboratory of Fossil Fuel Processing, Department of Chemical Engineering, School of Applied Sciences, Mongolian University of Science and Technology, Ulaanbaatar, Mongolia https://orcid.org/0000-0003-1469-6080

DOI:

https://doi.org/10.5564/pmas.v62i04.2678

Keywords:

Specific cake resistance, fouling mechanism, microfiltration membrane

Abstract

In the present work, the fouling behavior and the corresponding specific cake resistance of polyethersulfone microfiltration membrane fouled by using different solutions (bovine serum albumin solution, sodium alginate solution, humic acid and activated sludge suspension) under different operating conditions, transmembrane pressure (TMP), concentration (C), stirred speed (ω) and temperature (T) were systematically investigated. The ensuing results showed that the proposed equation can be used to accurately calculate instantaneous specific cake resistance (α). The average specific cake resistance increased with increasing operating pressure, concentration, and stirred speed, while it decreased with increasing operating temperature. The average specific cake resistance of sodium alginate (SA) was larger and the sequence was SA>HA>BSA>AS.

Downloads

Download data is not yet available.
Abstract
119
PDF 110

Author Biography

Wang Zhan, Beijing Key Laboratory for Green Catalysis and Separation, School of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, P.R. China

College of Environmental Science and Engineering, Tongji University, Shanghai, P.R. China

References

M. Elimelech, W. A. Phillip, The future of seawater desalination: Energy, technology, and the environment. Science, 333 (2011), pp.712-717 https://doi.org/10.1126/science.1200488

M. A. Shannon, P. W. Bohn, M. Elimelech, J. G. Georgiadis, B. J. Marin, A. M. Mayes, Science and technology for water purification in the coming decades. Nature, 452 (2008), pp.301-310. https://doi.org/10.1038/nature06599

Alireza Zirehpour, Ahmad Rahimpour, Membranes for Wastewater Treatment, 2, (2016), pp. 159-208. https://doi.org/10.1002/9781118831823.ch4

P. Blanpain, J. Hermia and M. Lenoel, Mechanisms governing permeation flux and protein rejection in the MF of beer with a Cyclopore membrane, J. Membr.Sc., 84 (1993), pp. 37-51. https://doi.org/10.1016/0376-7388(93)85049-3

A. Filippov, V. M. Starov, D. R. Lloyd, S. Chakravarti and S. Glaser, Sieve mechanism of microfiltration, J. Membr.Sc., 89 (1994), pp.199-213. https://doi.org/10.1016/0376-7388(94)80102-9

G. Belfort, R. H. Davis and A. L. Zydney, The behavior of suspensions and macromolecular solutions in cross-flow microfiltration, J.Membr.Sci., 96 (1994), pp. 1-58. https://doi.org/10.1016/0376-7388(94)00119-7

Zhan Wang, Ximing Zhang, Xu Wang & Yawen Lyu, Accumulated impact of operating conditions on the specific cake resistance in dead-end microfiltration mode, Desalination and Water Treatment , 57:5, pp.1967-1976. https://doi.org/10.1080/19443994.2014.983178

O. T. Iorhemen, R. A. Hamza, J. H. Tay, Membrane fouling control in membrane bioreactors (MBRs) using granular materials, Bioresour. Technol. 240 (2017) pp. 9-24. https://doi.org/10.1016/j.biortech.2017.03.005

J. Wu, C. He, X. Jiang, M. Zhang, Modeling of the submerged membrane bioreactor fouling by the combined pore constriction, pore blockage and cake formation mechanisms, Desalination 279 (2011) pp. 127-134. https://doi.org/10.1016/j.desal.2011.05.069

C. Caudan, A. Filali, M. Sperandio, E. Girbal-Neuhauser, Multiple EPS interactions involved in the cohesion and structure of aerobic granules, Chemosphere 117 (2014) pp. 262-270. https://doi.org/10.1016/j.chemosphere.2014.07.020

H. Lin, M. Zhang, F. Wang, F. Meng, B. Q. Liao, H. Hong, J. Chen, W. Gao, A critical review of extracellular polymeric substances (EPSs) in membrane bioreactors: characteristics, roles in membrane fouling and control strategies, J. Membr. Sci. 460 (2014) pp. 110-125. https://doi.org/10.1016/j.memsci.2014.02.034

W. Yao, Z. Wang, P. Song, The cake layer formation in the early stage of filtration in MBR: mechanism and model, J. Membr. Sci. 559 (2018) pp. 75-86. https://doi.org/10.1016/j.memsci.2018.04.042

D. P. Saroj, G. Guglielmi, D. Chiarani, G. Andreottola, Modeling and simulation of membrane bioreactors by incorporating simultaneous storage and growth concept: an especial attention to fouling while modeling the biological process, Desalination 221 (2008) pp. 475-482. https://doi.org/10.1016/j.desal.2007.01.108

S. T. Kelly, A. L. Zydney, Mechanisms for bsa fouling during microfiltration, J. Membr. Sci. 107 (1995) pp. 115-127. https://doi.org/10.1016/0376-7388(95)00108-O

K. Katsoufidou, S. Yiantsios, A. Karabelas, A study of ultrafiltration membrane fouling by humic acids and flux recovery by backwashing: experiments and modeling, J. Membr. Sci. 266 (2005) pp. 40-50. https://doi.org/10.1016/j.memsci.2005.05.009

C. Duclos-Orsello, W. Li, C. C. Ho, A three mechanism model to describe fouling of microfiltration membranes, J. Membr. Sci. 280 (2006) pp. 856-866. https://doi.org/10.1016/j.memsci.2006.03.005

L. Hou, Z. Wang, P. Song, A precise combined complete blocking and cake filtration model for describing the flux variation in membrane filtration process with BSA solution, J. Membr. Sci. 542 (2017) pp. 186-194. https://doi.org/10.1016/j.memsci.2017.08.013

J. Wu, C. He, X. Jiang, M. Zhang, Modeling of the submerged membrane bioreactor fouling by the combined pore constriction, pore blockage and cake formation mechanisms, Desalination 279 (2011) pp. 127-134. https://doi.org/10.1016/j.desal.2011.05.069

S. T. Kelly, A. L. Zydney, Mechanisms for bsa fouling during microfiltration, J. Membr. Sci. 107 (1995) pp. 115-127. https://doi.org/10.1016/0376-7388(95)00108-O

C. C. Ho, A. L. Zydney, A combined pore blockage and cake filtration model for protein fouling during microfiltration, J. Colloid Interface Sci. 232 (2000) pp. 389-399. https://doi.org/10.1006/jcis.2000.7231

G. Bolton, D. Lacasse, R. Kuriyel, Combined models of membrane fouling: development and application to microfiltration and ultrafiltration of biological fluids, J. Membr. Sci. 277 (2006) pp. 75-84. https://doi.org/10.1016/j.memsci.2004.12.053

C. Duclos-Orsello, W. Li, C. C. Ho, A three mechanism model to describe fouling of microfiltration membranes, J. Membr. Sci. 280 (2006) pp. 856-866. https://doi.org/10.1016/j.memsci.2006.03.005

W. Yuan, A. Kocic, A. L. Zydney, Analysis of humic acid fouling during microfiltration using a pore blockage-cake filtration model, J. Membr. Sci. 198 (2002) pp. 51-62. https://doi.org/10.1016/S0376-7388(01)00622-6

K. Katsoufidou, S. Yiantsios, A. Karabelas, A study of ultrafiltration membrane fouling by humic acids and flux recovery by backwashing: experiments and modeling, J. Membr. Sci. 266 (2005) pp. 40-50 https://doi.org/10.1016/j.memsci.2005.05.009

Y. Ye, V. Chen, A.G. Fane, Modeling long-term subcritical filtration of model EPS solutions, Desalination 191 (2006) 318-327 https://doi.org/10.1016/j.desal.2005.04.128

J. Wu, C. He, X. Jiang, M. Zhang, Modeling of the submerged membrane bioreactor fouling by the combined pore constriction, pore blockage and cake formation mechanisms, Desalination 279 (2011) 127-134 https://doi.org/10.1016/j.desal.2011.05.069

E. Iritani, Y. Mukai, Y. Tanaka, T. Murase, Flux decline behavior in dead-end microfiltration of protein solutions, J. Membr. Sci. 103 (1995), pp.181-191 https://doi.org/10.1016/0376-7388(94)00321-O

J. Sripui, C. Pradistsuwana, W.L. Kerr, P. Pradipasena, Effects of particle size and its distribution on specific cake resistance during rice wine microfiltration, J. Food. Eng. 105 (2011), pp.73-78 https://doi.org/10.1016/j.jfoodeng.2011.01.033

S.A. Lee, A.G. Fane, R. Amal, The effect of floc size and structure on specific cake resistance and compressibility in dead-end microfiltration, Sep. Sci. Technol. 38 (2003), pp.869-887 https://doi.org/10.1081/SS-120017631

N.M. Jenny, G. Foley, Dead-end filtration of yeast suspensions: Correlating specific resistance and flux data using artificial neural networks, J. Membr. Sci. 281 (2006), pp.325-333 https://doi.org/10.1016/j.memsci.2006.03.043

M. Mota, J.A. Teixeira, Influence of cell-shape on the cake resistance in dead-end and cross-flow filtrations, Sep. Purif. Technol. 27 (2002), pp.137-144 https://doi.org/10.1016/S1383-5866(01)00202-7

K. Ohmori, C.E. Glatz, Effects of pH and ionic strength on microfiltration of C. glutamicum, J. Membr. Sci. 153 (1999), pp.23-32. https://doi.org/10.1016/S0376-7388(98)00239-7

Application of linear multi-regression model for specific resistance study in the dead-end microfiltration - Details - 北京工业大学机构库 (inoteexpress.com)

Dimitrios Sioutopoulos, Anastasios Karabelas, Vasileios Mappas, Membrane Fouling Due to Protein-Polysaccharide Mixtures in Dead-End Ultrafiltration; the Effect of Permeation Flux on Fouling Resistance, 19 (2019), pp. 3-4. https://doi.org/10.3390/membranes9020021

Sutzkover-Gutman, D. Hasson, R. Semiat, Humic substances fouling in ultrafiltration processes, Desalination , 261 (2010), pp. 218-231. https://doi.org/10.1016/j.desal.2010.05.008

C. Halle, P .M. Huck, S. Peldszus, J. Haberkamp, M. Jekel, Assessing the performance of biological filtration as pretreatment to low pressure membranes for drinking water, Environ. Sci. Technol., 43 (2009), pp. 3878-3884. https://doi.org/10.1021/es803615g

Zhan Wang, Shanshan Zhao, Feng Liu, Liying Yang, Yin Song, Xiuyan Wang, Xuejie Xi, Influence of operating conditions on cleaning efficiency in sequencing batch reactor (SBR) activated sludge process -water rinsing introduced membrane filtration process, Desalination 259 (2010), pp. 235-242. https://doi.org/10.1016/j.desal.2010.03.048

中空纤维微滤膜污染及阻力分析 - 百度学术 (baidu.com)

K. Akamatsu, Y. Kagami, S. i. Nakao, Effect of BSA and sodium alginate adsorption on decline of filtrate flux through polyethylene microfiltration membranes, J. Membr. Sci. (2020) p. 594. https://doi.org/10.1016/j.memsci.2019.117469

M. Hashino, K. Hirami, T. Ishigami, Y. Ohmukai, T. Maruyama, N. Kubota, H. Matsuyama, Effect of kinds of membrane materials on membrane fouling with BSA, J. Membr. Sci. 384 (2011) pp. 157-165. https://doi.org/10.1016/j.memsci.2011.09.015

W. Yuan, A.L. Zydney, Humic acid fouling during microfiltration, J. Membr. Sci. 157 (1999) pp. 1-12. https://doi.org/10.1016/S0376-7388(98)00329-9

Y. Hao, A. Moriya, T. Maruyama, Y. Ohmukai, H. Matsuyama, Effect of metal ions on humic acid fouling of hollow fiber ultrafiltration membrane, J. Membr. Sci. 376 (2011) pp. 247-253. https://doi.org/10.1016/j.memsci.2011.04.035

Hou. D., Lin, D.,Zhao, C., Wang, J. Fu, C. 2017 Control of protein (BSA) fouling by ultrasonic irradiation during membrane distillation process. Separation and Purification Technology pp. 175, 287-297. https://doi.org/10.1016/j.seppur.2016.11.047

F. Xiao, P. Xiao, W. J. Zhang, D. S. Wang, Identification of key factors affecting the organic fouling on low-pressure ultrafiltration membranes, J. Membr. Sci. 447 (2013) pp. 144-152. https://doi.org/10.1016/j.memsci.2013.07.040

S. Nataraj, R. Schomäcker, M. Kraume, I .M. Mishra, A. Drews, Analyses of poly-saccharide fouling mechanisms during crossflow membrane filtration, J. Membr.Sci. 308 (2008) pp. 152-161. https://doi.org/10.1016/j.memsci.2007.09.060

G. Foley, P. F. MacLoughlin, D .M. Malone, Preferential deposition of smaller cells during cross-flow microfiltration of a yeast suspension, Biotechnol. Tech. 6 (1992) pp. 115-120. https://doi.org/10.1007/BF02438815

Kuo-Jen Hwang, Syuan-Jyun Lin, Filtration flux-shear stress-cake mass relationships in microalgae rotating-disk dynamic microfiltration, J. Chemical Engineering 244 (2014) pp. 429-437. https://doi.org/10.1016/j.cej.2014.01.076

Amine Charfi, Fida Tibi, Jeonghwan Kim, Jin Hur and Jinwoo Cho, Organic Fouling Impact in a Direct Contact Membrane Distillation System Treating Wastewater: Experimental Observations and Modeling Approach, 2021, 11(7): p. 493. https://doi.org/10.3390/membranes11070493

G. J. Grobben, J. Sikkema, M. R. Smith, J. A. M. D. Bont, Production of extracel-lular polysaccharides by Lactobacillus delbrueckii spp. bulgaricus NCFB 2772 grown in a chemically defined medium, J. Appl. Bacteriol. 79 (1995) pp. 103-107. https://doi.org/10.1111/j.1365-2672.1995.tb03130.x

P. van den Brink, O. A. Satpradit, A. van Bentem, A. Zwijnenburg, H. Temmink, M. van Loosdrecht, Effect of temperature shocks on membrane fouling in membrane bioreactors, Water Res. 45 (2011) pp. 4491-4500. https://doi.org/10.1016/j.watres.2011.05.046

Zhan Wang, Liying Yang,Yawen Lyu, Martculevich Nikolai Aleksandrov, Qian Zhang, Dezhong Liu, and Xining Zhang, Study of Dead-End Microfiltration Flux Variety Law, PartII: Choice of Favorable Model Parameter Separation Science and Technology, 2014, 49(17)pp. 2657-2667. https://doi.org/10.1080/01496395.2014.941489

Mahmood Saleem,Gernot Krammer, M. Suleman Tahir, The effect of operating conditions on resistance parameters of filter media and limestone dust cake for uniformly loaded needle felts in a pilot scale test facility at ambient conditions, 228 (2012) pp. 100-107. https://doi.org/10.1016/j.powtec.2012.05.003

T. B. Choe, P. Masse, A. Verdier, Membrane fouling in the ultrafiltration of polyelectrolyte solutions: Polyacrylic acid and bovine serum albumin, J.Membr. Sci.26(1986) pp.17-30.. https://doi.org/10.1016/S0376-7388(00)80110-6

F. B. Javier, A. L. Juan, A. I. Leal, and M. Gonzalez, The use of ultrafiltration and nanofiltration membranes for the purification of cork processing wastewater, J.Hazard. Mater.162(2009) pp.1438-1445. https://doi.org/10.1016/j.jhazmat.2008.06.036

Downloads

Published

2023-01-18

How to Cite

Khaliunaa, N., Zhan, W., Wang, X., & Bold, T. (2023). Impacts of operating conditions on specific cake resistance in dead-end microfiltration process. Proceedings of the Mongolian Academy of Sciences, 62(04), 1–20. https://doi.org/10.5564/pmas.v62i04.2678

Issue

Section

Articles