Isolation and functional characterization of root nodule-associated bacteria from the rare legume Chesniella macrantha in Mongolia
DOI:
https://doi.org/10.5564/mjas.v18i43.3941Keywords:
Chesniella macrantha Cheng f. ex H.C.Fu; rhizobia, 16S rRNA gene, indole acetic acid, phosphate solubilizationAbstract
A total of 18 bacterial strains were isolated from the root nodules of Chesniella macrantha Cheng f. ex H.C.Fu, a very rare, subendemic, and relict plant species in Mongolia. Based on 16S rRNA gene sequence analysis, the strains were assigned to four genera: Priestia (10 strains), Rhizobium (6 strains), Peribacillus (1 strain), and Neobacillus (1 strain). Ten strains exhibited 99.65–100% similarity to Priestia aryabhattai B8W22T or Priestia megaterium NBRC 15308T, while strains Gr2-1, Gr2-2, Gr2-3-1, Gr3-1, Gr3-2-1, and UN2-3 showed 99.78–100% similarity to Rhizobium mongolense subsp. mongolense USDA 1844T. Two strains, Gr2-4-1 and UN1-2, were most closely related to Peribacillus simplex NBRC 15720T (99.93–100%) and Neobacillus drentensis LMG 21831T (99.71%), respectively. Eight strains produced indole-3-acetic acid (IAA) in LB medium supplemented with 5 mM L-tryptophan, and three exhibited phosphate solubilization activity. Six Priestia strains, Gr2-3, Gr2-4-2, Gr3-2, Gr3-3, Gr3-3-1, and UN1-3, showed high IAA production, whereas Priestia strains Gr2-3, Gr3-3, and UN2-5 solubilized phosphate on Pikovskaya’s agar, with a solubilization index (SI) of 2.16 ± 0.02 cm. Among all isolates, Rhizobium strain Gr3-2-1 was the most effective in promoting both root elongation and branching in C. macrantha plantlets, indicating its potential use in propagation and conservation of this endangered Mongolian legume.
Downloads
64
References
[1]. L. Duan, X. Yang, P. Liu, G. Johnson, J. Wen, and Z. Chang, “A molecular phylogeny of Caraganeae (Leguminosae, Papilionoideae) reveals insights into new generic and infrageneric delimitations,” PhytoKeys, vol. 70, pp. 111–137, 2016. https://doi.org/10.3897/phytokeys.70.9641
[2]. WFO, “Chesneya macrantha W.C.Cheng ex H.C.Fu,” World Flora Online, 2025. Accessed: Oct. 28, 2025. http://www.worldfloraonline.org/taxon/wfo-0001062481
[3]. J. I. Sprent, J. Ardley, and E. K. James, “Legume nodulation: A global perspective,” Annu. Rev. Plant Biol., vol. 68, pp. 351–378, 2017.
[4]. J. Hallmann, A. Quadt-Hallmann, W. F. Mahaffee, and J. W. Kloepper, “Bacterial endophytes in agricultural crops,” Can. J. Microbiol., vol. 43, no. 10, pp. 895–914, 1997. https://doi.org/10.1139/m97-131
[5]. G. Santoyo, G. Moreno-Hagelsieb, M. del C. Orozco-Mosqueda, and B. R. Glick, “Plant growth-promoting bacterial endophytes,” Microbiol. Res., vol. 183, pp. 92–99, 2016. https://doi.org/10.1016/j.micres.2015.11.008
[6]. S. Compant, B. Duffy, J. Nowak, C. Clément, and E. A. Barka, “Use of plant growth-promoting bacteria for biocontrol of plant diseases: Principles, mechanisms of action, and future prospects,” Appl. Environ. Microbiol., vol. 71, no. 9, pp. 4951–4959, 2005. https://doi.org/10.1128/AEM.71.9.4951-4959.2005
[7]. P. R. Hardoim et al., “The hidden world within plants: Ecological and evolutionary considerations for defining functioning of microbial endophytes,” Microbiol. Mol. Biol. Rev., vol. 79, no. 3, pp. 293–320, 2015. https://doi.org/10.1128/MMBR.00050-14
[8]. V. C. Verma et al., “Rhizobium as soil health engineer,” in Rhizosphere Engineering, R. C. Dubey and P. Kumar, Eds. London: Academic Press, 2022, pp. 77–95. https://doi.org/10.1016/B978-0-323-89973-4.00023-5
[9]. R. Muresu, A. Porceddu, L. Sulas, and A. Squartini, “Nodule-associated microbiome diversity in wild populations of Sulla coronaria reveals clues on the importance of rhizobial symbionts and co-infecting endophytes,” Microbiol. Res., vol. 221, pp. 10–14, 2019. https://doi.org/10.1016/j.micres.2019.01.004
[10]. T. Munkhbayar, M. Tserendagva, B. Ulziibat, A. Balt, and O. Yungeree, “Establishment of an in vitro propagation protocol for Spongiocarpella grubovii Ulzij., subendemic species of Mongolia,” in Proc. Int. Biol. Conf. Mongolia (IBCM 2025), p. 136, 2025. https://doi.org/10.2991/978-94-6463-837-0_10
[11]. J. M. Vincent, A Manual for the Practical Study of Root Nodule Bacteria. Oxford, U.K.: Blackwell, 1970, p. 164.
[12]. E. A. Jigjiddorj et al., “Diversity and plant growth-promoting properties of endophytic microorganisms from Saussurea bogedaensis and its newly recorded distribution site in Mongolia,” in Proc. Int. Biol. Conf. Mongolia (IBCM 2025), p. 168, 2025. https://doi.org/10.2991/978-94-6463-837-0_12
[13]. S. H. Yoon et al., “Introducing EzBioCloud: A taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies,” Int. J. Syst. Evol. Microbiol., vol. 67, pp. 1613–1617, 2017. https://doi.org/10.1099/ijsem.0.001755
[14]. C. S. Kumar, T. Jacob, S. Devasahayam, S. Thomas, and C. Geethu, “Multifarious plant growth promotion by an entomopathogenic fungus Lecanicillium psalliotae,” Microbiol. Res., vol. 207, pp. 153–160, 2018. https://doi.org/10.1016/j.micres.2017.11.017
[15]. S. B. Rajini, M. Nandhini, A. C. Udayashankar, S. R. Niranjana, O. S. Lund, and H. S. Prakash, “Diversity, plant growth-promoting traits, and biocontrol potential of fungal endophytes of Sorghum bicolor,” Plant Pathol., vol. 69, pp. 642–654, 2020. https://doi.org/10.1111/ppa.13151
[16]. L. D. Kuykendall, T. E. Stowers, and J. M. E. Riker, “Genus Bradyrhizobium Jordan, 1982, 107,” in Bergey’s Manual of Systematic Bacteriology, vol. 3, J. T. Staley, M. P. Bryant, N. Pfennig, and J. G. Holt, Eds. Baltimore, MD: Williams & Wilkins, 1998, pp. 242–246.
[17]. D. Egamberdieva, S. J. W. Wirth, A. A. Alqarawi, E. F. Abd-Allah, and A. Hashem, “Plant-growth-promoting bacteria newly isolated from a saline desert soil improve growth and stress tolerance in maize (Zea mays L.),” J. Plant Interact., vol. 12, no. 1, pp. 162–172, 2017.
[18]. N. Fraysse, F. Couderc, D. Le-Redulier, and Y. Dessaux, “The mutualistic association between Rhizobium tropici and Phaseolus vulgaris is protected against a competitive non-symbiotic bacterium by a trappable rhizobium-produced compound,” New Phytol., vol. 160, no. 3, pp. 779–788, 2003.
[19]. I. W. Sutherland, “Microbial polysaccharides,” Carbohydr. Polym., vol. 45, no. 3, pp. 209–215, 2001. https://doi.org/10.1016/S0144-8617(00)00242-3
[20]. G. E. D. Oldroyd, J. D. Murray, P. S. Poole, and J. A. Downie, “The rules of engagement in the legume–rhizobial symbiosis,” Annu. Rev. Genet., vol. 45, pp. 119–144, 2011. https://doi.org/10.1146/annurev-genet-110410-132549
[21]. E. T. Kiers, R. A. Rousseau, S. A. West, and R. F. Denison, “Host sanctions and the legume–Rhizobium mutualism,” Nature, vol. 425, no. 6953, pp. 78–81, 2003. https://doi.org/10.1038/nature01931
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Munkhjargal Sengenorov, Munkhtsetseg Tserendagva, Marjangul Nuramkhaan, Selenge Munkhtsetseg, Batbileg Batsaikhan, Bolorbuyan Batsansar, Bolorbuyan Batsansar, Altanzul Khorolragchaa, Yungeree Oyunbileg, Enkh-Amgalan Jigjiddorj

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright on any research article in the Mongolian Journal of Agricultural Sciences is retained by the author(s).
The authors grant the Mongolian Journal of Agricultural Sciences a license to publish the article and identify itself as the original publisher.

Articles in the Mongolian Journal of Agricultural Sciences are Open Access articles published under a Creative Commons Attribution 4.0 International License CC BY.
This license permits use, distribution and reproduction in any medium, provided the original work is properly cited.