Mathematically modeling the energy effeciency of a closed-loop air circulation heat dryer in the potato drying process

Authors

DOI:

https://doi.org/10.5564/mjas.v15i37.3090

Keywords:

heat pump, low temperature drying, SMER and drying model

Abstract

Potatoes are a major global agricultural resource, where they are ranked as the fourth most commonly grown crop worldwide. In this paper, we examined the experimental results of potatoes drying via a closed-loop air circulation method. In order to cool the air and remove moisture in the drying process with closed-loop air circulation, we used natural cool air. Moisture escaped and cooled air is heated by an electric heater. , The drying experiment was carried out on peeled potatoes in the form of cubes (5´5´5 mm) without any pre-treatment. Firstly, the potatoes were dried at an air flow rate of 1.0 m/s and at temperatures of 42, 56, and 65 °С. Then, air consumption and energy consumption efficiency was analyzed using Wang and Singh’s mathematical model. The value of SMER was ranging between an interval of 0.24132-0.26624 kg/(kWh).

Байгалийн хөргөлтөөр чийг зайлуулах конденсатор бүхий агаарын битүү сэлгэлттэй дулааны хатаагуурт төмс хатаах процессын математик загвар, эрчим хүчний үр ашиг

Энэ өгүүлэлд агаарын битүү сэлгэлттэй хатаах аргаар төмс хатаасан туршилтын үр дүнг үзүүллээ. Агаарын битүү сэлгэлттэй хатаах процесст агаарыг хөргөж чийг зайлуулахын тулд байгалийн хүйтэн агаарыг ашигласан. Чийгээ алдаж хөрсөн агаарыг цахилгаан халаагуураар халаана. Төмс хүнсний ногоо нь хүн амын хоол тэжээлийн гол түүхий эд бөгөөд төмс нь дэлхийн хүн амын хоол тэжээлийн дөрөв дэх чухал хүнс юм [9]. Хальсыг арилгаж цэвэрлэсэн шоо хэлбэртэй төмсийг (5´5´5 мм) урьдчилсан боловсруулалт хийлгүйгээр хатаах туршилтыг хийсэн. Эхлээд төмсийг 1м/с агаарын урсгалын хурдтай, 42, 56, 65 °С температуртай агаараар хатааж судлаачдын тодорхойлсон хатаах процессын математик загваруудаас хамгийн тохиромжтой загварыг тодорхойлсон. Математик загваруудаас хамгийн тохиромжтой нь Wang and Singh, Midilli нарын загвар байлаа. Дараагийн туршилтаар конденсаторт гаднаас өгөх байгалийн агаарын температур ба агаарын зарцуулалтыг туршилт төлөвлөлтийн аргаар төлөвлөж Wang and Singh загварын коэффициентүүдын утгын регрессийн загвар болон эрчим хүчний зарцуулалтын үр ашгийг тодорхойллоо. SMER-ийн утга 0.24132-0.26624 кг/(кВт ц) завсарт хэлбэлзэж байна.

 Түлхүүр үг: дулааны насос, нам температурын хатаалт, SMER, хатаалтын загвар

 

Downloads

Download data is not yet available.
Abstract
40
PDF
47

References

AGHBASHLO, M., KIANMEHR, M.H. and ARABHOSSEINI, A. 2009. Modeling of thin-layer drying of potato slices in length of continuous band dryer. Energy Convers. Manage. 50, 1348–1355. https://doi.org/10.1016/j.enconman.2009.01.004

ZLATANOVIC, I., KOMATINA, M., & ANTONIJEVIC, D. 2017. Experimental investigation of the efficiency of heat pump drying system with full air recirculation. Journal Food Process Engineering, 40(2), e12386. https://doi.org/10.1111/jfpe.12386

AKHILESH ,S., JAHAR,S. AND RASHMI,R.S. 2020. Experimental energy-exergy performance and kinetics analyses of compact dual-mode heat pump drying of food chips. Food Process Eng. 2020;43:e13404. https://doi.org/10.1111/jfpe.13404

VIVIAN N. PLETNEY. 2007. Focus on food engineering research and developments. y Nova Science Publishers, Inc.30-31.

IVAN ZLATANOVIC, MIRKO KOMATINA and DRAGI ANTONIJEVIC, 2016. Experimental investigation of the efficiency of heat pump drying system with full air recirculation. Journal of Food Process Engineering. 1745–4530. https://doi.org/10.1111/jfpe.12386

ONWUDE DI, HASHIM N, ABDAN K, JANIUS R, CHEN G. Investigating the influence of novel drying methods on sweet potato (Ipomoea batatas L.): Kinetics, energy consumption, color, and microstructure. Journal of Food Process Eng. 2018;41: e12686. https://doi.org/10.1111/jfpe.12686

PARK H W, YOON W B. Effects of air movement in a hot air dryer on the drying characteristics of colored potato (Solanum tuberosum L.) using computational fluid dynamics. Int J Agric & Biol Eng, 2018; 11(1): 232–240. https://doi.org/10.25165/j.ijabe.20181101.3293

V.P.CHANDRA MOHAN and PRABAL TALUKDAR, “Experimental Studies for Convective Drying of Potato,” Heat Transfer Engineering, 35(14–15):1288–1297 2014, https://doi.org/10.1080/01457632.2013.876844

SINGH, N.J. AND PANDEY, R.K. 2012. Convective air drying characteristics of sweet potato cube. Food Bioprod. Process. 90, 317–322. https://doi.org/10.1016/j.fbp.2011.06.006

KAI FAN, LIBING CHEN, JIE HE AND FENGWEI YAN. characterization of thin layer hot air drying of sweet potatoes (ipomoea batatas l.) slices. Journal of Food Processing and Preservation july 6, 2014 https://doi.org/10.1111/jfpp.12355

SAMIRA NADERINEZHAD, NASRIN ETESAMI, AREFE POORMALEK NAJAFABADY AND MAJID GHASEMI FALAVARJANI, Matematical modeling of drying of potato slices in a forced convective dryer based on important parametrers, Food Science abd Nutrition, 4 june 2015, https://doi.org/10.1002/fsn3.258

THEERAKULPISUT, S. 1990. Modelling heat pump grain drying system, PhD Thesis, University of Melburne, Department of Mechanical and Manufacturing Engineering, Australia.

BRAUN, J.E., BANSAL, P.K. and GROLL, E.A. 2002. Energy effciency analysis of air cycle heat pump dryers. Int. J. Refrig. 25, 954–965. https://doi.org/10.1016/S0140-7007(01)00097-4

PRASERTSAN, S. and SAEN-SABY, P. 1998. Heat pump dryers: Research and development needs and o ortunities, Drying Technol. 16, 251–270. https://doi.org/10.1080/07373939808917402

BRUCE, D.M. 1985. Exposed-layer barley drying, three model fitted to new data up to 150C. J. Agric. Eng. Res. 32, 337–347. https://doi.org/10.1016/0021-8634(85)90098-8

KARATHANOS, V.T. and BELESSIOTIS, V.G. 1999. Application of a thin layer equation to drying data of fresh and semi-dried fruits. J. Agric. Eng. Res. 74, 355–361. https://doi.org/10.1006/jaer.1999.0473

OVERHULTS, D.G., WHITE, G.M., HAMILTON, H.E. and ROSS, I.J. 1973. Drying soybeans with heated air. Trans. ASAE 16, 112–113. https://doi.org/10.13031/2013.37459

WANG, C.Y. and SINGH, R.P. 1978. Use of variable equilibrium moisture content in modeling rice drying. Trans. ASAE 11, 668–672. https://doi.org/10.1016/S0360-5442(01)00018-4

YALDIZ, O., ERTEKIN, C. and UZUN, H.B. 2001. Mathematical modeling of thin layer solar drying of sultana grapes. Energy 26, 457–465. https://doi.org/10.1016/S0360-5442(01)00018-4

HENDERSON, S.M. 1974. Progress in developing the thin layer drying equation. Trans. ASAE 17, 1167–1172. https://doi.org/10.13031/2013.37052

AKPINAR, E.K. 2006. Determination of suitable thin layer drying curve model for some vegetables and fruits. J. Food Eng. 73, 75–84. https://doi.org/10.1016/j.jfoodeng.2005.01.007

MIDILLI, A., KUCUK, H. and YAPAR, Z. 2002. A new model for single layer drying. Dry. Technol. 20, 1503–1513. https://doi.org/10.1081/DRT-120005864

TADEUSZ KUDRA, ARUN S. MUJUMDAR. 2002. Advanced Drying Technologies. Marcel Dekker, Inc. 270 Madison Avenue, New York, -468 p

SOSLE, V., RAGHAVANA, G.S.V. and KITTLER, R. 2003. Low temperature drying using a versatile heat pump dehumidifier. Drying Technol. 21, 539–554 https://doi.org/10.1081/DRT-120018461

AKHILESH SINGH, JAHAR SARKAR, RASHMI REKHA SAHOO. 2020. Experimental energy-exergy performance and kinetics analyses of compact dual-mode heat pump drying of food chips. Food Process Eng. 2020;43:e13404. https://doi.org/10.1111/jfpe.13404

VASILE, M. 2004. Heat pumps for wood drying-new developments and preliminary result. Maderas ciencia y technologia .6(2), 123-132 https://doi.org/10.4067/S0718-221X2004000200003

PHANI, K. ADAPA , SHAHAB SOKHANSANJ and GREG J. SCHOENAU.2002. Performance study of a re-circulating cabinet dryer using a household dehumidifier. 20, 1673-1689. https://doi.org/10.1081/DRT-120015407

FATOUH, M., METWALLY, M.N., HELALI, A.B. and SHEDID, M.H. 2006. Herbs drying using a heat-pump dryer. Energy Convers. Manage. 47, 2629–2643. https://doi.org/10.1016/j.enconman.2005.10.022

KIRBAS, I., TUNCER, A. D., S¸IRIN, C., & USTA, H. 2019. Modeling and developing a smart interface for various drying methods of pomelo fruit (Citrus maxima) peel using machine learning approaches. Computers and Electronics in Agriculture, 165, 104928. https://doi.org/10.1016/j.compag.2019.104928

YOUSSEF, K. M. EMBABY, H. E. 2012. influence of drying air temperature, air velocity and surface load on drying kinetics and color of jew's mallow leaves. J. Food and Dairy Sci., Mansoura Univ., Vol. 3 (7):401 – 416 https://doi.org/10.21608/jfds.2012.77721

Downloads

Published

2022-12-30

How to Cite

Chuluun, M. (2022). Mathematically modeling the energy effeciency of a closed-loop air circulation heat dryer in the potato drying process . Mongolian Journal of Agricultural Sciences, 15(37), 32–42. https://doi.org/10.5564/mjas.v15i37.3090

Issue

Section

Articles