Simulation on Sangaku problem using optimization methods
DOI:
https://doi.org/10.5564/jimdt.v5i1.3316Keywords:
Sangaku problem, packing problem, circle, local optimizationAbstract
Sangaku problem is one of Japanese Temple Geometry problems which was studied in Hidetoshi Fukugawa[1]. One of the Sangaku problem is packing 6 equal circles in rectangle of 1:1.934798 size. We examine the problem from a view point of optimization theory and algorithm. We show that Sangaku optimization problem belongs to a class of nonconvex optimization and propose a penalty method for solving the problem numerically. In numerical expirements, we consider equal and unequal 6 circles. Computational results obtained on Python Jupyter Notebook are provided.
Сангаку бодлогыг оптимизацийн аргаар бодох нь
Хураангуй: Сангаку бодлого нь Японы эртний геометрийн бодлого юм. Энэхүү судалгаандаа бид Хидетоши Фукугава эрдэмтний судалсан 1:1.934798 хэмжээтэй тэгш өнцөгтөд 6 ижил тойрог багтаах сангаку бодлогыг авч үзэв. Энэ бодлогыг хучилтын бодлогын хүрээнд оптимизацийн аргаар бодсон ба энэ нь гүдгэр бус максимумчлалын бодлого болно.Бодлогыг өргөтгөж, ижил бус 6 тойргын хувьд бодож торгуулийн функцийн аргаар нэмж тооцооллыг хийв. Python Jupyter Notebook программ дээр тооцооллыг хийж үр дүнг гаргасан болно.
Түлхүүр үгс: Сангаку бодлого, хучилтын бодлого, тойрог, оптимизацийн арга
Downloads
97
References
Simulation on Sangaku problem using optimization methods
H. Fukagawa, and Dan Pedoe, “Japanese Temple Geometry Problem,” Charles Babbage Research Centre, Winnipeg, 1989.
H.Fukagawa, “Symmetry in traditional Japanese mathematics,” Symmetry: Culture and Science, Vol. 8, No. I, 24-54, 1997.
H.Fukagawa, and T.Rothman, “Sacred Mathematics: Japanese Temple Geometry,” Princeton University Press, 2008.
R.Enkhbat, and E.Enkhtsolmon, “Packing problem’s numerical experiments,” Institute of Mathematics and Digital Technology, Mongolian Academy of Sciences, Vol. 2, pp. 8-16, 2020.
Charles R. Collins, and Kenneth Stephenson, “A circle packing algorithm,” Computational Geometry, Vol. 25, pp. 233-256, 2003, https://doi.org/10.1016/S0925-7721(02)00099-8.
R.Enkhbat, “Global optimization approach to Malfatti’s problem,” Journal of Global Optimization, Vol. 65, pp. 33-39, 2016, https://doi.org/10.1007/s10898-015-0372-6.
Szab´o, P.G, Mark´ot, M.C, Csendes, T, “Global Optimization in Geometry - Circle Packing into the Square,” Essays and Surveys in Global Optimization, Springer, Boston, MA, pp. 233-265, 2005, https://doi.org/10.1007/0-387-25570-2_9.
Xiangjing Lai, Jin-Kao Hao, Dong Yue, Zhipeng L¨u, and Zhang-Hua Fu, “Iterated dynamic thresholding search for packing equal circles into a circular container,” European Journal of Operational Research, Vol. 299, pp. 137-153, 2022, https://doi.org/10.1016/j.ejor.2021.08.044.
R.Enkhbat, “Convex Maximization Formulation of General Sphere Packing Problem,” The Bulletin of Irkutsk State University,Series Mathematics, Vol. 31, pp. 142-149, 2020, https://doi.org/10.26516/1997-7670.2020.31.142.
R.Enkhbat, “Optimization 5,” National University of Mongolia, Ulaanbaatar, 2018.
Jorge Nocedal, and Stephen J. Wright, “Numerical Optimization,” Springer, 1999.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Davaajargal Jargalsaikhan, Enkhbat Rentsen, Dulguuntuya Bataa, Bayarjargal Dalkhjav
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors grant the Journal of Institute of Mathemathics and Digital Technology a license to publish the article and identify itself as the original publisher.
Articles in the Journal of Institute of Mathemathics and Digital Technology are Open Access articles published under a Creative Commons Attribution-NonCommercial 4.0 International License - CC BY NC.
This license permits NonComericial use, distribution and reproduction in any medium, provided the original work is properly cited.