A study on the properties of zinc-enriched spent brewer’s yeast hydrolysate

Authors

  • Bayarsukh Zolzaya Laboratory of Biochemistry, Institute of Chemistry and Chemical Technology, Mongolian Academy of Sciences, Ulaanbaatar 13330, Mongolia https://orcid.org/0009-0003-0142-5422
  • Tsoggerel Ariunsaikhan Laboratory of Biochemistry, Institute of Chemistry and Chemical Technology, Mongolian Academy of Sciences, Ulaanbaatar 13330, Mongolia
  • Erdene Lkhagvamaa Laboratory of Biochemistry, Institute of Chemistry and Chemical Technology, Mongolian Academy of Sciences, Ulaanbaatar 13330, Mongolia
  • Baltsukh Oyuntuya Laboratory of Biochemistry, Institute of Chemistry and Chemical Technology, Mongolian Academy of Sciences, Ulaanbaatar 13330, Mongolia
  • Munkhuu Bayarjargal Laboratory of Biochemistry, Institute of Chemistry and Chemical Technology, Mongolian Academy of Sciences, Ulaanbaatar 13330, Mongolia
  • Tudev Gan-Erdene Laboratory of Biochemistry, Institute of Chemistry and Chemical Technology, Mongolian Academy of Sciences, Ulaanbaatar 13330, Mongolia

DOI:

https://doi.org/10.5564/bicct.v11i11.3285

Keywords:

zinc peptide-chelates/complexes, distribution of molecular weight of peptides, toxicity

Abstract

The purpose of this study was to determine the physicochemical properties of the complex obtained by reacting spent
brewer's yeast hydrolysate with zinc sulfate and to establish the possibility of its use. The zinc-enriched yeast hydrolysate was determined to contain 8.2% of total nitrogen, 2.72% of amino nitrogen, 0.5% of fat, 9.8% of ash, 5.4% of moisture, and 610 mg/kg of
zinc. Peptide molecular mass distribution in zinc-enriched yeast hydrolysate was assessed using gel filtration chromatography,
which gave results of >13.2 kDa - 3.2%, 1.54-13.2 kDa -75.5%, <1.54 kDa - 21%. Also 73% of total zinc detected in the three peptide fractions of hydrolysate. In comparison, complexometric titration revealed that zinc-peptide chelates, or zinc bound to peptides,
accounted for 56% of total zinc. Zinc was involved in the creation of complexes with amide and carboxyl groups in peptides, according to the infrared (IR) spectroscopy analysis. The toxicity of the product was evaluated using Artemia salina (brine shrimp),
classified as "non-toxic." Because of its low toxicity and high solubility, the zinc-enriched spent brewer’s yeast hydrolysate can be
used as a zinc source in cosmetics and biologically active products.

Цайраар баяжуулсан пивоны дрожжийн гидролизатын шинж чанарын судалгаа

Хураангуй: Энэхүү судалгаанд пивоны дрожжийн гидролизатыг цайрын сульфаттай урвалжуулж гарган авсан комплексын
физик-химийн шинж чанарыг тодорхойлж, ашиглах боломжийг тогтоох зорилтыг тавьсан. Судалгаанд авсан цайраар
баяжуулсан дрожжийн гидролизат нь 8.2% нийт азот, 2.72% амины азот, 0.5% тос, 9.8% үнс, 5.4% чийг, 610 ppm цайр
агуулж байгаа болохыг тодорхойлов. Цайраар баяжуулсан дрожжийн гидролизатын найрлага дах пептидүүдийн молекул
массын түгэлтийг гель фильтрацийн хроматографийн аргаар үнэлэхэд >13.2 кДa - 3.2%, 1.54-13.2 кДa - 75.5%, <1.54 кДа -
21% эзлэж байсан бөгөөд гидролизатад тодорхойлогдсон нийт цайрын 73% нь пептидийн дээрх гурван фракцад илэрсэн.
Үүнтэй харьцуулахад комплексонометрийн титрлэлтийн аргаар нийт цайрын 56% нь цайр-пептидийн хелат (пептидүүдтэй
холбогдсон цайр) хэлбэрт оршиж байгааг илрүүлсэн. Нил улаан туяа (НУТ)-ны спектроскопын шинжилгээгээр цайр нь
пептидүүдийн амидын болон карбоксил бүлгүүдтэй комплекс нэгдэл үүсгэхэд оролцсон болохыг тогтоов. Бүтээгдэхүүний
хоруу чанарыг Artemia salina (давстай усны сам хорхой)-г ашиглан тодорхойлоход “хоргүй” ангилалд багтаж байв. Цайртай
комплекс нь уусамтгай чанар сайтай, хоруу чанар багатай зэрэг нь гоо сайхан, биологийн идэвхт бүтээгдэхүүнд цайрын эх
үүсвэр болгон ашиглах боломжтойг харуулж байна.

Түлхүүр үг: цайр пептидийн хелат нэгдэл, пептидүүдийн молекул массын түгэлт, хоруу чанар

Downloads

Download data is not yet available.
Abstract
29
PDF 35

References

A.S. Oliveira, C. Ferreira, J.O. Pereira, M.E. Pintado, A.P. Carvalho. (2022) Spent brewer's yeast (Saccharomyces cerevisiae) as a potential source of bioactive peptides: An overview. International journal of biological macromolecules. 208, p.1116–1126. https://doi.org/10.1016/j.ijbiomac.2022.03.094

X. Wang, J. Zhou, P.S. Tong, X.Y. Mao. (2011) Zinc-binding capacity of yak casein hydrolysate and the zinc-releasing characteristics of casein hydrolysate-zinc complexes. Journal of dairy science. 94(6), p.2731–2740. https://doi.org/10.3168/jds.2010-3900

A.V. Marukhlenko, M.A. Morozova, A.M.J. Mbarga, N.V. Antipova, A.V. Syroeshkin, et al. (2022) Chelation of zinc with biogenic amino acids: Description of properties using balaban index, assessment of biological activity on Spirostomum ambiguum cellular biosensor, influence on biofilms and direct antibacterial action. Pharmaceuticals. 15(8), p.979. https://doi.org/10.3390/ph15080979

R.L. Lander, T. Enkhjargal, J. Batjargal, K.B. Bailey, S. Diouf, et al. (2008) Multiple micronutrient deficiencies persist during early childhood in Mongolia. Asia Pacific journal of clinical nutrition. 17(3), p.429–440. https://doi.10.1096/fasebj.22.1_supplement.893.3

J. Ryan, F. Kratzer, C. Gau, P. Vohra. (1986) Glandless cottonseed meal for laying and breeding hens and broiler chicks. Poultry Science. 65(5), p.949-955. https://doi.org/10.3382/ps.0650949

C. Wang, B. Li, J. Ao. (2012) Separation and identification of zinc-chelating peptides from sesame protein hydrolysate using IMAC-Zn²⁺ and LC-MS/MS. Food chemistry. 134(2), p.1231–1238. https://doi.org/10.1016/j.foodchem.2012.02.204

P. Pastore, A. Gallina, P. Lucaferro, F. Magno. (1999) Cu(II)-amino acid and Cu(II)-peptide chelates in animal feeding: a semi-quantitative approach to characterize the commercial products and the limits of their structural integrity. Analyst. 124, p.837-842. https://doi.org/10.1039/A901489F

G.B. Kim, Y.M. Seo, K.S. Shin, A.R. Rhee, J. Han, et al. (2011). Effects of performance, blood 1. parameters, liver mineral content, and intestinal microflora of broiler chickens. Journal of Applied Poultry Research. 20(1), p.21-32. https://doi.org/10.3382/japr.2010-00177

X. Liu, Z. Wang, F. Yin, Y. Liu, N. Qin. (2019) Zinc-chelat mechanism of sea cucumber (Stichopus japonicus) derived synthetic peptides. Marine drugs. 17(8), p.438. https://doi.org/10.3390/md17080438

M.C. Udechukwu, B. Downey, C.C. Udenigwe. (2018) Influence of structural and surface properties of whey-derived peptides on zinc-chelating capacity, and in vitro gastric stability and bioaccessibility of the zinc-peptide complexes. Food chemistry. 240, p.1227–1232. https://doi.org/10.1016/j.foodchem.2017.08.063

F.F. Jacob, L. Striegel, M. Rychlik, M. Hutzler, F.J. Methner. (2019) Spent yeast from brewing processes: A biodiverse starting material for yeast extract production. Fermentation. 5(2), p.51. https://doi:10.3390/fermentation5020051

https://www.1212.mn Статистик мэдээллийн сан.

I. Ferreira, O. Pinho, E. Vieira, J. Tavarela. (2010) Brewer's Saccharomyces yeast biomass: Characteristics and potential applications. Trends in Food Science & Technology. 21(2), p.77-84. https://doi.org/10.1016/j.tifs.2009.10.008

Б. Оюунтуяа, Б. Золзаяа, Э. Лхагвамаа, А. Энх-Ариун, Б. Дэлгэрмөрөн, М. Баяржаргал ба бусад. (2020) Пивоны дрожжийн гидролизатыг зэсээр баяжуулж шинж чанарыг тодорхойлсон дүнгээс. “Хими-2020” эрдэм шинжилгээний бага хурал Х. 40 (ханан илтгэл)

B.S. Gustavo, V.S.B. Paulo, D.I. Marcelo, C.C. Eduardo. (2020) Determination of zinc oxide in pharmaceutical preparations by EDTA titration: A practical class for a quantitative analysis course. Journal of Chemical Education. 97(2), p.522–527. https://doi.org/10.1021/acs.jchemed.9b00939

K. Zhu, X. Wang, X. Guo. (2015) Isolation and characterization of zinc-chelating peptides from wheat germ protein hydrolysates. Journal of Functional Foods. 12, p.23-32. https://doi.org/10.1016/j.jff.2014.10.030

D. Lu, M. Peng, M. Yu, B. Jiang, H. Wu, et al. (2021) Effect of enzymatic hydrolysis on the zinc binding capacity and in vitro gastrointestinal stability of peptides derived from pumpkin (Cucurbita pepo L.) seeds. Frontiers in nutrition. 8, p.647782. https://doi.org/10.3389/fnut.2021.647782

R.N. Jegathambigai, I. Rusli, S. Sreenivasan. (2014) Acute oral toxicity and brine shrimp lethality of methanol extract of Mentha spicata L. (Lamiaceae). Tropical Journal of Pharmaceutical Research. 13(1), p.101-107. https://doi.org/10.4314/tjpr.v13i1.15

M. Hamidi, B. Jovanova, P.T. Kadifkova. (2014) Toxicological evaluation of the plant products using brine shrimp model. Macedonian Pharmaceutical Bulletin. 60(01), p.9-18. https://doi.org/10.33320/maced.pharm.bull.2014.60.-01.002.

A. Andini, E. Prayekti, W.D. Dyah, E. Nidianti. (2020). Cytotoxicity assay using brine shrimp lethality test on collagen-chitosan wond dressing sterilized by ultraviolet light. Indonesian Journal of Medical Laboratory Science and Technology. 2, p.21-26. https://doi:10.33086/ijmlst.v2i1.1467.

A. Henriques, J.A. Vázquez, J. Valcarcel, R. Mendes, N.M. Bandarra et al. (2021) Characterization of protein hydrolysates from fish discards and by-products from the north-west spain fishing fleet as potential sources of bioactive peptides. Marine drugs. 19(6), p.338. https://doi.org/10.3390/md19060338

S. Zhu, Y. Zheng, S. He, D. Su, A. Nag et al. (2021) Novel Zn-binding peptide isolated from soy protein hydrolysates: Purification, structure, and digestion. Journal of agricultural and food chemistry. 69(1), p.483–490. https://doi.org/10.1021/acs.jafc.0c05792

Д. Монхообор, Г. Батчимэг. (2009) Молекулын бүтэц ба спектроскопи. Улаанбаатар. х.46

К.К. Сидоров, (1973) О классификации токсичности ядов при парентеральных способах введения. Токсикология новых промышленных химических веществ (вып. 13). М.: Медицина 47.

W. Fan, Z. Wang, Z. Mu, M. Du, L. Jiang et al. (2020) Characterizations of a Food Decapeptide Chelating with Zn(II). Efood. 1(4), p.326-331. https://doi.org/10.2991/efood.k.200727.001

R. Sun, X. Liu, Y. Yu, J. Miao, K. Leng et al. (2021) Preparation process optimization, structural characterization and in vitro digestion stability analysis of Antarctic krill (Euphausia superba) peptides-zinc chelate. Food Chemistry. 340, p.128056. https://doi.org/10.1016/j.foodchem.2020.128056

Ch. Li, G. Bu, F. Chen, T. Li, (2020) Preparation and structural characterization of peanut peptide–zinc chelate. CyTA-Journal of Food. 18, p.409-416. https://doi.org/10.1080/19476337.2020.1767695

M. Lieberman. (1999) A brine shrimp bioassay for measuring toxicity and remediation of chemicals. Journal of Chemical Education. 76(12), p.1689. https://doi.org/10.1021/ed076p1689

P. Sorgeloos, C. Remiche-Van Der Wielen, G. Persoone. (1978) The use of Artemia nauplii for toxicity tests - A critical analysis. Ecotoxicology and Environmental Safety. 2(3-4), p.249–255. https://doi:10.1016/s0147-6513(78)80003-7

H. Lim, I.K. Paik, T. Sohn, W. Kim. (2006) Effects of supplementary copper chelates in the form of methionine, chitosan and yeast on the performance of broilers. Asian-Australasian Journal of Animal Sciences. 19(9), p.1322-1327. https://doi.org/10.5713/ajas.2006.1322.

Downloads

Published

2023-12-16

How to Cite

Zolzaya, B., Ariunsaikhan, T., Lkhagvamaa, E., Oyuntuya, B., Bayarjargal, M., & Gan-Erdene, T. (2023). A study on the properties of zinc-enriched spent brewer’s yeast hydrolysate. Bulletin of the Institute of Chemistry and Chemical Technology, 11(11), 28–35. https://doi.org/10.5564/bicct.v11i11.3285

Issue

Section

Articles