Application of the reference interaction site model theory for methane-ethane-like mixture
DOI:
https://doi.org/10.5564/bicct.v11i11.3282Keywords:
methane, ethane, integral equation, internal energyAbstract
The reference interaction site model (RISM) theory has been applied for methane-like, ethane-like molecules and methane-ethane-like mixture. The Lennard-Jones potential is used to describe a molecular interaction. The Percus-Yevick and Martynov-Sarkisov bridge functions have been employed. For reduced temperatures of 2.5 and 5.15, the configurational internal energy for the systems has been computed as a function of a reduced number density. A mole fractions of the methane-like molecule for mixture are 0.25, 0.5 and 0.75. For the densities less than 0.6, results obtained from both bridge functions are almost indistinguishable, and for densities from 0.6 to 0.9, a minor discrepancy has been shown up. For equimolar mixture, and for density of 0.1 to 0.8 the computed findings have been compared with accurate ones obtained with a molecular dynamics (MD) simulation and a maximum deviation is 2%. Moreover, the structure for the mixture computed with the RISM equation presents good agreement with that from the MD simulation.
Метан, этаны холимог системд интеграл тэгшитгэлийн онолыг хэрэглэх нь
Хураангуй: Метан, этан төсөөт молекулууд тэдгээрийн хольцыг хос корреляци тооцоолсон интеграл аргын хүрээнд судлав.
Молекуляр харилцан үйлчлэлийг Леннард-Жонс потенциалаар загварчилсан бөгөөд гүүр функцийг байгуулахдаа Перкус-Иевикийн болон Мартынов-Саркисовын ойролцооллуудыг ашигласан. Хураангуйлсан температурын 2.5 болон 5.15
утгуудад метан, этан төсөөт молекулууд болон эдгээрийн холимог системийн хувьд, метан төсөөт молекулын молийн хувь
0.25, 0.5 болон 0.75 байхад, системийн дотоод энергийг хураангуйлсан нягтаас хамааруулж тооцоолов. Нягтын утга 0.6-ээс
бага байхад эдгээр хоёр ойролцооллын үр дүн хоорондоо ялгагдахгүй байсан бол, нягт нь 0.6-аас их үед зөрүү ажиглагдаж
байв. Ижил хэмжээтэй хольцын хувьд, нягт нь 0.8 хүртэлх утгуудын хувьд, дотоод энергийн утгыг нарийвчлал сайтай
молекулын динамикийн загварчлалын үр дүнтэй харьцуулахад зөрүү нь 2%-аас хэтрэхгүй байв. Түүнчлэн холимог
системийн бүтцийг дүрсэлж молекулын динамикийн загварчлалын үр дүнтэй харьцуулахад ерөнхийдөө сайн таарч байв.
Түлхүүр үг: метан, этан, интеграл тэгшитгэл, дотоод энерги
Downloads
1039
References
F. Hirata. (2003) Molecular theory of solvation, Kluwer Academic Publishers, Dordrecht, The Netherlands.
D. Chandler, H.C. Andersen. (1972) Optimized cluster expansions for classical fluids. II. Theory of molecular liquids. Journal of Chemical Physics. 57, p.1930-1937. https://doi.org/10.1063/1.1678513
F. Hirata, P.J. Rossky. (1981) An extended rism equation for molecular polar fluids. Chemical Physics Letters. 83, p.329-334. https://doi.org/10.1016/0009-2614(81)85474-7
R.S. Wu, L.L. Lee, J.J. Harwell. (1989) Solution of reference interaction site model for mixtures of short‐chain polyatomic molecules. Journal of Chemical Physics. 91, p.4245-4264. https://doi.org/10.10 63/1.456805
Q. Cui, V.H. Smith. (2000) Analysis of solvation structure and thermodynamics of methane in water by reference interaction site model theory using an all-atom model. Journal of Chemical Physics. 113, p.10240-10245. https://doi.org/10.1063/1.1313788
J.K. Percus, G.J. Yevick. (1958) Analysis of classical statistical mechanics by means of collective coordinates. Physical Review. 110, p.1. https://doi.org/10.1103/PhysRev.110.1
G.A. Martynov, G.N. Sarkisov. (1983) Exact equations and the theory of liquids. V. Molecular Physics. 49, p.1495-1504. https://doi.org/10.1080/00268978300102111
C. Massobrio, J.M. Haile, L.L. Lee. (1988) Group contribution methods for molecular mixtures. II. Computer simulation results. Fluid Phase Equilibria. 44, p.145-173. https://doi.org/10.1016/0378-3812(88)80109-2
Ts. Banzragch, Ts. Tsogbayar, Kh. Tsookhuu. (2022) Excess chemical potentials for hard atomic and diatomic solutes dissolved in hard-diatomic fluid. Bulletin of the Institute of Chemistry and Chemical Technology. 10, p.34-39. https://doi.org/10.5564/bicct.v10i10.2592
S. Amokrane, A. Ayadim, J.G. Malherbe. (2006) Ornstein–Zernike equations for highly asymmetric mixtures: confronting the no-solution challenge. Molecular Physics. 104, p.3419-3424. https://www.tandfonline.com/doi/abs/10.1080/00268970600988449
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Tsednee Banzragch, Tsednee Tsogbayar, Khinayat Tsookhuu
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright on any research article in the Bulletin of the Institute of Chemistry and Chemical Technology, MAS is retained by the author(s).
The authors grant the Bulletin of the Institute of Chemistry and Chemical Technology, MAS a license to publish the article and identify itself as the original publisher.
Articles in the Bulletin of the Institute of Chemistry and Chemical Technology, MAS are Open Access articles published under a Creative Commons Attribution 4.0 International License CC BY.
This license permits use, distribution and reproduction in any medium, provided the original work is properly cited.