Sequential leaching of the synchysite-bearing ore by sulfuric acid and thio-bacteria
DOI:
https://doi.org/10.5564/bicct.v11i11.3281Keywords:
carbonatite, rare earth element, acid leaching, bioleaching, thio-bacteriaAbstract
In recent years, the problem of the complete use of resources is critical because the demand for rare earth elements has
increased due to the limited amount of non-renewable resources. Therefore, this research aimed to determine the possibility of
increasing metal recovery by sequentially leaching rare earth elements by acid and bacteria of synchysite-bearing ore. We selected
the ore of rare earth elements from the Lugiin gol deposit for the leaching and prepared it by grinding it to a 1-5 mm particle size.
The X-ray diffraction, petrographic, and minerographic analysis determined that the Lugiin gol deposit consisted of carbonatite
rock containing pyrite and synchysite minerals. The rare earth ore was leached in 1.0 M H2SO4 for 6 weeks. After that, the
bioleaching was carried out with a solid residue of acidic leaching after 42 days with thio-bacteria. The content of La, Ce, Pr, Nd,
and Sm in the leachate was determined by the inductively coupled optical emission spectrometry. The metal recovery by acid
leaching was 64-88% and as a result of bioleaching, the metal recovery increased by 10-15%.
Furthermore, the total metal recovery reached 74.4-98.1% for La, Ce, Pr, Nd, and Sm. Consequently, under ambient conditions, the
bioleaching following the acid leaching of the sample increased the rare earth metal recovery. Hence, it was possible to concentrate
metal from ore with higher efficiency at mild conditions (1.0 M sulfuric acid, solid-to-liquid ratio of 1:6, room temperature and
pressure).
Синхезитийн хүдрийг хүчил ба тионы бактериар дараалан уусган баяжуулах судалгаа
Хураангуй: Сүүлийн жилүүдэд газрын ховор элементийн эрэлт хэрэгцээ нэмэгдэж, үл нөхөн сэргээгдэх нөөц баялгийн
хэмжээ хязгаарлагдмал болж байгаа учир нөөцийг бүрэн ашиглах асуудал чухал билээ. Энэ судалгааны ажлаар синхезит
агуулсан газрын ховор элементийн хүдрийг хүчил ба бактериар дараалан уусгаж, металл авалтыг нэмэгдүүлэх боломжийг
тогтоохоор зорилоо. Уусалтад Лугийн голын газрын ховор элементийн хүдрийг сонгон авч, ширхэглэлийн хэмжээг 1-5 мм
байхаар нунтаглаж бэлдсэн. Лугийн голын газрын ховор элементийн хүдэр нь синхезит, пирит агуулсан карбонатитын
чулуулгаас бүрдсэн болохыг рентген диффракцийн анализ, петрограф ба минерографийн шинжилгээгээр тогтоов. Хүчлийн
уусалтыг 1.0 М концентрацтай хүхрийн хүчлээр 42 хоног, уусалтын дараах хатуу үлдэгдэлд тионы бактериар мөн 42
хоногийн турш биоуусалтыг явуулж, уусмалд шилжсэн La, Ce, Pr, Nd, Sm-ын агуулгыг индукцийн холбоот оптик
цацаргалтын спектрометрээр тодорхойллоо. Хүчлийн уусалтаар металл авалт La, Ce, Pr, Nd, Sm-ийн хувьд 64-88%, улмаар
хүчлийн уусалтын хатуу үлдэгдэлд хийсэн биоуусалтын дүнд металл авалт 10-15%-аар нэмэгдэж, нийт металл авалт 74.4-
98.1%-д хүрсэн. Иймд газрын ховор элементийн хүдрийг хүчлээр уусгасны дараа биологийн аргаар дараалан уусгаснаар
металл авалтыг нэмэгдүүлэн, ердийн нөхцөлд хүдрээс металлыг өндөр бүтээмжтэйгээр уусган баяжуулах боломжтой юм.
Синхезитийн хүдрийг хүчил ба тионы бактериар дараалан уусган баяжуулах судалгаа
Түлхүүр үг: карбонатит, газрын ховор элемент, хүчлийн уусалт, биоуусалт, тионы бактер
Downloads
148
References
A. Micheal. (2023) Rare Earth Elements: Emerging Advances, Technology, Utilization and Resource Procurement, 1st Ed., UK:IntechOpen, London. https://doi.org/10.5772/intechopen.102266
С. Жаргалан. (2021) Газрын ховор металл: Монгол орны тархалт, хэтийн төлөв, 1 дэх хэвлэлт, ШУТИС-ийн хэвлэх үйлдвэр, УБ.
Д. Пүрэвжаргал. (2023) Синхезит агуулсан газрын ховор элементийн хүдрийг уусган баяжуулах судалгаа, Магистрын судалгааны ажил, МУИС, УБ.
Z. Limin, D. Hailiang, L. Yan, B. Liang, W. Xi, Z. Ziqi, H. Ying. (2018) Bioleaching of rare earth elements from bastnasite-bearing rock by actinobacteria. Chemical Geology. 483, p.544-557. https://doi.org/10.1016/j.chemgeo.2018.03.023
R. Payam, B. Robert Barthen, L. Aino-Maija. (2020) A critical review of bioleaching of rare earth elements: The mechanisms and effect of process parameters. Critical reviews in environmental science and technology. 51, p.1-45. https://doi.org/10.1080/10643389.2020.1727718
A. Shahbaz, (2022). A systematic review on leaching of rare earth metals from primary and secondary sources. Minerals Engineering. 184, p.107632. https://doi.org/10.1016/j.mineng.2022.107632
F. Sadri, M.A. Nazari, A. Ghahreman. (2017) A review on the cracking, baking and leaching processes of rare earth element concentrates. Journal of rare earths. 35, p.739-752. https://doi.org/10.1016/S1002-0721(17)60971-2
A. Yorukoglu, A. Obut, I. Girgin. (2003) Effect of thiourea on sulphuric acid leaching of bastnaesite. Hydrometallurgy. 68, p.195-202. https://doi.org/10.1016/S0304-386X(02)00199-8
J. Temuujin, G. Burmaa, B. Davaabal, D.S. Kim, H.J. Lee. (2017) Preparation of rare earth oxides from synchysite oxidized ore by acid leaching. Mongolian Journal of Chemistry. 18, p.1-4. https://doi.org/10.5564/mjc.v18i44.931
R.F. Francisco, S. Axel. (2022) Progress in bioleaching: part B, applications of microbial processes by the minerals industries. Applied Microbiology and Biotechnology. 106, p.5913-5928. https://doi.org/10.1007/s00253-022-12085-9
H.R. Watling. (2006) The bioleaching of sulphide minerals with emphasis on copper sulphides. Hydrometallurgy. 84, p.81-108. https://doi.org/10.1016/j.hydromet.2006.05.001
C.K. Tanne, A. Schippers. (2019). Electrochemical investigation of chalcopyrite bioleaching residues. Hydrometallurgy. 187, p.8-17. https://doi.org/10.1016/j.hydromet.2019.04.022
S. Aghazadeh, H. Abdollahi, M. Gharabaghi, M. Mirmohammadi. (2023) Bioleaching of zinc, copper and antimony from a tetrahedrite concentrate using acidophilic microorganisms. Hydrometallurgy. 219, p.106075. https://doi.org/10.1016/j.hydromet.2023.106075
H. Abdollahi, M. Noaparast, S.Z. Shafaei, Z. Manafi, J.A. Munoz, O.H. Tuovinen. (2015) Silver-catalyzed bioleaching of copper, molybdenum and rhenium. International Biodeterioration and Biodegradation. 104, p.194-200. https://doi.org/10.1016/j.ibiod.2015.05.025
Y. Rodriguez, A. Ballester, M.L. Blazquez, F. Gonzalez, J.A. Munoz. (2003) New information on the sphalerite bioleaching mechanism at low and hihg temperature. Hydrometallurgy. 71, p.57-66. https://doi.org/10.1016/S0304-386X(03)00174-9
H.M. Lizama, M.J. Fairweather, Z. Dai, T.D. Allegretto. (2008) How does bioleaching start. Hydrometallurgy. 69, p.109-116. https://doi.org/10.1016/S0304-386X(03)00028-8
T.A. Fowler, P.R. Holmes, F.K. Crundwell. (2001) On the kinetics and mechanism of the dissolution of pyrite in the presence of Thiobacillus ferrooxidans. Hydrometallurgy. 59, p.257-270. https://doi.org/10.1016/S0304-386X(00)00172-9
F.L. Cruz, V.A. Oliveira, D. Guimaraes, A.D. Souza, V.A. Leao. (2010) High-temperature bioleaching of nickel sulfides: thermodynamic and kinetic implications. Hydrometallurgy. 105, p.103-109. https://doi.org/10.1016/j.hydromet.2010.08.006
S. Doyun, K. Jiwoong, K. Byung-su, J. Jinki, L. Jae-chun. (2015) Use of phosphate solubilizing bacteria to leach rare earth elements from monazite-bearing ore. Minerals. 5, p.189-202. https://doi.org/10.3390/min5020189
A.G.H. Wesam, A.N.D. Osman, S.E.H. Shimaa. (2014). Bioleaching of some rare earth elements from Egyptian monazite using Aspergillus ficuum and Pseudomonas aeruginosa. Engineering and Physical Sciences. 11(9), p.809-823.
X. Meng, H. Zhao, Y. Zhang, L. Shen, G. Gu, G. Qui, X. Zhang, H. Yu, X. He, C. Liu. (2022) Simulated bioleaching of ion-adsorption rare earth ore using metabolites of biosynthetic citrate: An alternative to cation exchange leaching. Minerals Engineering. 189, p.107900. https://doi.org/10.1016/j.mineng.2022.107900
M.M. Amin, I.E. El-Aassy, M.G. El-Feky, A.M. Sallam, E.M. El-Sayed, A.A. Nada, N.M. Harpy. (2014) Fungal leaching of rare earth elements from lower carboniferous shales, Southwestern Sinai, Egypt. Romanian Journal of Biophysics. 24(1), p.25-41.
H.A. Ibrahim, E.M. El-Sheikh. (2011) Bioleaching treatment of Abu Zeneima Uraniferous Gibbsite Ore material for recovering U, REEs, Al and Zn. Research Journal of Chemical Sciences. 1(4), p.55-66.
Г. Дамдин. (2014) Лугийн гол газрын ховор шороон элементийн ордын хүдрийн найрлага. Хайгуулчин, х.15-20.
С. Даваасүрэн. (2008) Монгол орны өнгөт, үнэт металлын хүдэр, сульфидын болон сульфидын биш эрдсүүдийн биогидрометаллургийн судалгаа. МУИС, ШУА, УБ.
P. Rasoulnia, R. Barthen, A. Lakaniemi. (2021) A critical review of bioleaching of rare earth elements: The mechanisms and effect of process parameters. Critical reviews in Environmental Science and Technology. 51(4), p.378-427. https://doi.org/10.1080/10643389.2020.1727718
С. Даваасүрэн. (1991) Зэсийн биогидро-металлурги. ШУА, УБ.
Р. Яниак. (2011) Органик биш хими. 8 дахь хэвлэлт, Адмон, УБ.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Daramjav Purevjargal, Bayarsaikhan Bayarbayasgalan, Sanjugar Tuul, Batchuluun Sukhbaatar, Amarsanaa Altangerel, Davaasambuu Sarangerel
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright on any research article in the Bulletin of the Institute of Chemistry and Chemical Technology, MAS is retained by the author(s).
The authors grant the Bulletin of the Institute of Chemistry and Chemical Technology, MAS a license to publish the article and identify itself as the original publisher.
Articles in the Bulletin of the Institute of Chemistry and Chemical Technology, MAS are Open Access articles published under a Creative Commons Attribution 4.0 International License CC BY.
This license permits use, distribution and reproduction in any medium, provided the original work is properly cited.