Possibility of obtaining a porous silica material from Khongor-ovoo kaolinite by mechanochemical activation

Authors

  • Bayarzul Uyat Laboratory of Material Science and Technology, Institute of Chemistry and Chemical Technology, Mongolian Academy of Sciences, Ulaanbaatar 13330, Mongolia https://orcid.org/0000-0003-1421-3878
  • Darkhijav Burenkhangai Laboratory of Material Science and Technology, Institute of Chemistry and Chemical Technology, Mongolian Academy of Sciences, Ulaanbaatar 13330, Mongolia
  • Oyun-Erdene Gendenjamts Laboratory of Material Science and Technology, Institute of Chemistry and Chemical Technology, Mongolian Academy of Sciences, Ulaanbaatar 13330, Mongolia
  • Batchimeg Ganbaatar Department Research of Wool and Cashmere of Research and Development Institute of Light Industry under Mongolian University Science and Technology, Ulaanbaatar 17000, Mongolia
  • Jadambaa Temuujin Laboratory of Material Science and Technology, Institute of Chemistry and Chemical Technology, Mongolian Academy of Sciences, Ulaanbaatar 13330, Mongolia

DOI:

https://doi.org/10.5564/bicct.v10i10.2603

Keywords:

metakaolinite, acid leaching, dissolution of alumina, specific surface area, porous

Abstract

Kaolinite contains the largest amount of aluminosilicate, has a high surface area and volume ratio, is closely connected with tetrahedral Si2O5 and octahedral AI2(OH)4 sheets, and thus forms a two-sheet phyllosilicate structure. It belongs to a 1:1 type of clay structural classification. It is also an important and commonly used clay mineral. In this study, the mineral properties of Khongor-Ovoo kaolinite, located in the area of Khar-Airag sum, Dornogovi province, were studied and the prospect of porous silica material was determined by performing time-dependent mechanochemical activation and further dissolution in 20% sulfuric acid. The properties of the material were determined by the methods of X-ray fluorescence (XRF), differential thermal analysis-thermogravimetry (DTA/TG), X-ray diffractometer (XRD), scanning electron microscope (SEM), infrared spectroscope (FTIR), and the parameters of mechanical properties were analyzed. Мetakaolinite prepared by heat-treating the kaolinite mineral from Khongor-Ovoo was processed by mechanochemical activation up to for 30 minutes and then dissolved in 20% sulfuric acid at 90oC, the aluminum content of kaolinite mineral decreased from 26.96% to 2.54%, and the specific surface area of 58.38 m2/g increased to 182 m2/g. The porous silica contains only minor amount of quartz as an impurity.

Механохимийн идэвхжүүлэлтээр Хонгор-Овоогийн каолинитаас сүвэрхэг цахиурт материал гарган авах боломж

Хураангуй: Каолинит нь алюминосиликат хамгийн их хэмжээгээр агуулдаг, гадаргуугийн талбай болон эзлэхүүний харьцаа өндөртэй, талстын бүтэц дахь тетраэдр Si2O5 хуудас нь октаэдр AI2(OH)4 хуудастай дундын хүчилтөрөгчийн атомоор нягт холбогдож, 1:1 төрлийн шаврын бүтцийн ангилал үүсгэдэг, эдийн засаг болоод үйлдвэрлэлийн хувьд чухал ач холбогдолтой, түгээмэл хэрэглэгддэг шаварлаг эрдэс юм.

Энэхүү судалгааны ажлын хүрээнд Дорноговь аймгийн Хар-Айраг сумын нутагт орших Хонгор–Овоогийн каолинитын эрдсийн шинж чанарыг судалж, хугацаанаас хамаарсан механохимийн идэвхжүүлэлтийг хийж, улмаар 20% хүхрийн хүчлээр боловсруулан уусгах замаар сүвэрхэг цахиурт материал гарган авах боломжийг тогтоосон. Материалын шинж чанарыг рентгенфлуоросценци (XRF), дифференциал дулааны анализ-термогравиметр (DTA/TG), рентгендифрактометр (XRD), сканнинг электрон микроскоп (SEM), нил улаан туяаны спекроскопи (FTIR)-ын аргуудаар тодорхойлсноос гадна механик шинж чанарын үзүүлэлтүүдийг тооцоолон гаргасан.

Судалгааны үр дүнд Хонгор-Овоогийн каолинитын эрдсийг дулааны боловсруулалтад оруулан метакаолинит бэлтгэн, цааш метакаолинитыг нүүрстөрөгчийн нано хоолойн нэмэлтэйгээр 30 минут механохимийн идэвхжүүлэлтийн аргаар боловсруулж, улмаар 20%-ийн хүхрийн хүчилд 900С-д уусгахад каолинитын хөнгөнцагааны агуулга 26.96%-иас 2.54% хүртэл буурч, хувийн гадаргуугийн талбайн 58.38 м2 /г-аас 187.2 м2 /г болж өсөн, эрдсийн хувьд дан кварц бүхий, нүх сүвэрхэг бүтэцтэй цахиурт материал үүссэн.

Түлхүүр үг: Метакаолинит, хүчлийн уусгалт, хөнгөнцагааны уусалт, гадаргуугийн талбай, нүх сүв.

Downloads

Download data is not yet available.
Abstract
105
PDF 107

References

J.Temuujin, K.J.D.MacKenzie, Ts.Jadambaa, A.van Riessen (2010) Preparation and properties of nanoporous materials prepared from natural clay minerals, Nanoporous Materials Types, Properties and Uses, 211-232, Nova Sciences Publishers.

J.Ravichandran (1997). Properties and catalytic activity of acid-modified montmorillonite and vermiculite. Clays Clay Minerals, 45, 854–858.

K.Okada, K.J.D.MacKenzie (2006). Nanoporous materials from mineral band organic templates, in Nanomaterials from research to applications, 349-382, Elsever, San-Diego. DOI:10.1016/B978-008044964-7/50012-1

K.Okada, A.Shimai, T.Takei, S.Hayashi, A.Yasumori, K.J.D.MacKenzie (1998) Preparation of microporous silica from metakaolinite by selective leaching method. Microporous and Mesoporous Materials. 21(46):289-296. https://doi.org/10.1016/S1387-1811(98)00015-8

J.Temuujin, K.Okada, K.J.D.MacKenzie, T.Jadambaa (2001) Characterization of porous silica prepared from mechanically amorphized kaolinite by selective leaching. Powder Technology. 121(2-6):259–262. https://doi.org/10.1016/S0032-5910(01)00363-1

É.Makó, Z.Senkár, J.Kristóf, V.Vágvölgyi (2006). Surface modification of mechanochemically activated kaolinites by selective leaching. Journal of Colloid and Interface Science. 294:362–370. https://doi.org/10.1016/j.jcis.2005.07.033

A.G.S.Cristóbal, R.Castelló, M.A.MLuengo, C.Vizcayno (2009). Acid activation of mechanically and thermally modified kaolins. Material Research Bulletin. 44(11):2103–2111. https://doi.org/10.1016/j.materresbull.2009.07.016

J.Temuujin, K.Okada, T.Jadambaa, K.J.D.Mackenzie, J.Amarsanaa (2002). Effect of grinding on the preparation of porous material from talc by selective leaching. Journal of Material Science Letter. 21:1607–1609. https://doi.org/10.1023/A:1020373617167

H.Yang, C.Du, Y.Hu, S.Jin, W.Yang, A.Tang, E.G.Avvakumov (2006). Preparation of porous material from talc by mechanochemical treatment and subsequent leaching. Applied Clay Science. 31:290–297. https://doi.org/10.1016/j.clay.2005.10.015

M.K.Uddin (2017) A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chemical Engineering Journal. 308:438–462. https://doi.org/10.1016/j.cej.2016.09.029

R.Y.Stefanova (2001). Metal removal by thermally activated clay marl. Journal of Environmental Science and Health. 36:293–306. DOI:10.1081/ese-100102923

Б.Намжилдорж (2018) Монгол орны шаварлаг түүхий эдийн судалгаа, туршилт, боловсруулалт, ISBN 978-99978-3-706-6.

M.Garcia-Valles, P.Alfonso, S.Martínez, N.Roca (2020). Mineralogical and thermal characterization of kaolinitic clays from Terra Alta (Catalonia, Spain), Minerals. 10(2):142. https://doi.org/10.3390/min10020142

A.E.Souza, S.R.Teixeira, G.T.A.Santos, E.Longo (2013). Addition of sedimentary rock to kaolinitic clays: infl uence on sintering process. Cerâmica. 59:147-155.

WWW-MINCRYST information card - QUARTZ (iem.ac.ru)

WWW-MINCRYST information card - CORUNDUM (iem.ac.ru)

WWW-MINCRYST information card - KAOLINITE (iem.ac.ru)

V.C.Farmer (ed.), (1974) The infrared spectra of minerals. Mineral. Society, London, p. 560.

Downloads

Published

2022-12-30

How to Cite

Uyat, B., Burenkhangai, D., Gendenjamts, O.-E., Ganbaatar, B., & Temuujin, J. (2022). Possibility of obtaining a porous silica material from Khongor-ovoo kaolinite by mechanochemical activation. Bulletin of the Institute of Chemistry and Chemical Technology, 10(10), 112–116. https://doi.org/10.5564/bicct.v10i10.2603

Issue

Section

Articles