Synthesis of nanocomposite materials with montmorillonite and multiwalled carbon nanotubes

Authors

  • Luvsandagva Mandakhsaikhan Laboratory of Material Science and Technology, Institute of Chemistry and Chemical Technology, Mongolian Academy of Sciences, Ulaanbaatar 13330, Mongolia https://orcid.org/0000-0002-1465-0894
  • Dolgormaa Anudari Laboratory of Material Science and Technology, Institute of Chemistry and Chemical Technology, Mongolian Academy of Sciences, Ulaanbaatar 13330, Mongolia
  • Ochirkhuyag Altantuya Laboratory of Material Science and Technology, Institute of Chemistry and Chemical Technology, Mongolian Academy of Sciences, Ulaanbaatar 13330, Mongolia
  • Gendenjamts Oyun-Erdene Laboratory of Material Science and Technology, Institute of Chemistry and Chemical Technology, Mongolian Academy of Sciences, Ulaanbaatar 13330, Mongolia

DOI:

https://doi.org/10.5564/bicct.v10i10.2601

Keywords:

clay, mechanical treatment, alkali treatment, autoclave

Abstract

The purpose of this study was to produce a nanocomposite material by modifying and combining natural montmorillonite clay from the Khumuult deposit with multi-walled carbon nanotubes. Clay and multi-walled carbon nanotubes were pre-treated separately in several steps before combining them to produce a composite material. Mechanical processing was used to enrich the mineral montmorillonite from natural clay samples. The enriched montmorillonite sample was then autoclaved in alkali (NaOH), and the amount of total silica in the clay sample decreased from 38.4% to 21.7% in X-ray fluorescence analysis, indicating that the alkali treatment was effective. After functionalization, Fourier transform infrared spectroscopy (FTIR) spectroscopic analysis revealed the intensity of the amine group at 1540 and 2356 cm-1 , proving that the amine group successfully interacted on the montmorillonite. Commercial multiwalled carbon nanotubes were oxidized and carboxylated to increase activity and yield a composite. The FTIR, X-ray diffractometer, Scanning Electron Microscope (SEM), and Raman spectroscopy were used to investigate the properties of composite materials. According to the test results, the chemical composition of the composite material was 19.65% carbon, 41.06% oxygen, 8.86% aluminum, 9.75% silicon, and 7.52% iron. SEM analysis of our synthesized composite material revealed that multi-walled carbon nanotubes were evenly distributed on the surface of the clay. Further, it is considered necessary to conduct a detailed study of the characteristics and applications of the composite materials synthesized.

Монтмориллонит ба олон ханат нүүрстөрөгчийн нано хоолой бүхий нано композит материалын нийлэгжүүлэлт

Хураангуй: Хөмүүлтийн ордын монтмориллонитын төрлийн байгалийн шаврыг олон ханат нүүрстөрөгчийн нано хоолойтой нийлэгжүүлж, нано композит материал гарган авах зорилгоор энэхүү судалгааны ажлыг гүйцэтгэлээ. Байгалийн шаврын дээжинд механик боловсруулалт хийж монтмориллонитыг баяжуулсан. Баяжуулсан дээжинд автоклавын аргаар шүлтийн боловсруулалт хийж үр дүнг рентгенфлуоросценцын аргаар тодорхойлоход, шаврын дээж дэх нийт цахиурын оксидийн хэмжээ 38.4%-иас 21.7% болж буурсан нь шүлтийн боловсруулалт үр дүнтэй явагдсаныг харуулж байна. Шүлтийн боловсруулалт хийсэн шаврыг гексаметилэндиаминаар үйлчлэн амин (-NH2) бүлгийг суулгасан бөгөөд нил улаан туяаны спектроскопын шинжилгээгээр амин бүлгийн эрчим илэрсэн. Худалдааны олон ханат нүүрстөрөгчийн нано хоолойг исэлдүүлэн, карбоксилжүүлж бэлтгэсэн. Шавар болон олон ханат нүүрстөрөгчийн нано хоолойг тус тусад нь боловсруулалт хийсний эцэст композит материалыг химийн аргаар нийлэгжүүлэн гарган авсан. Композит материалын шинж чанарыг судлахдаа нил улаан туяаны спектрометр, рентгендифрактометр, сканнинг электрон микроскоп болон раман спектроскопын шинжилгээний аргыг ашигласан. Туршилтын дүнгээс харахад, композит материал нь химийн найрлагын хувьд нүүрстөрөгч 19.65%, хүчилтөрөгч 41.06%, хөнгөнцагаан 8.86%, цахиур 9.75%, төмөр 7.52% агуулгатай байсан ба шаврын гадаргуу дээр олон ханат нүүрстөрөгчийн нано хоолой жигд тархан сууж, композит материал нийлэгжсэн болох нь сканнинг электрон микроскопын шинжилгээний дүнгээс харагдаж байв. Цаашид гарган авсан композит материалын шинж чанарын болон хэрэглээний судалгааг нарийвчлан хийх шаардлагатай гэж үзэж байна.

Түлхүүр үг: шавар, механик боловсруулалт, шүлтийн боловсруулалт, автоклав.

Downloads

Download data is not yet available.
Abstract
184
PDF
138

References

Б.Намжилдорж (2018). Монгол орны шаварлаг түүхий эдийн судалгаа, туршилт боловсруулалт. ШУТИС-ын хэвлэх үйлдвэр. Улаанбаатар.

R. E. Grim and H. Kodama (2022). Clay Mineral. [Online]. Available: https://www.britannica.com/science/clay-mineral

P. Avouris (2002). Molecular electronics with carbon nanotubes. Acc. Chem. Res., 35(12):1026-1034. https://doi.org/10.1021/ar010152e

E. T. Thostenson, Z. Ren, T.-W. Chou (2001). Advances in the science and technology of carbon nanotubes and their composites: a review. Compos. Sci. Technol., 61(13):1899-1912. https://doi.org/10.1016/S0266-3538(01)00094-X

Y.Zhao, J. Fraser Stoddart (2009). Noncovalent functionalization of single-walled carbon nanotubes. Acc. Chem. Res., 42(8):1161-1171. https://doi.org/10.1021/ar900056z

Sumio Iijima (1991). Helical microtubules of graphitic carbon. Nature, 354:56-58. https://doi.org/10.1038/354056a0

T. W. Ebbesen, P. M. Ajayan (1976). Large scal1. synthesis of carbon nanotubes. Nature, 358:220-222. https://doi.org/10.1038/358220a0

A.Oberlin, M.Endo, T.Koyama (1976). Filamentous growth of carbon through benzene decomposition. J. Cryst. Growth., 32(3):335-349. https://doi.org/10.1016/0022-0248(76)90115-9

S. Iijima, T. Ichihashi (1993). Single-shell carbon nanotubes of 1-nm diameter. Nature, 363:603-605. https://doi.org/10.1038/363603a0

Asif AbdulAzeez, Kyong YopRhee, Soo JinPark, DavidHui (2013). Epoxy clay nanocomposites – processing, properties and applications: A review. Composites Part B: Engineering. Volume 45, Pages 308-320. https://doi.org/10.1016/j.compositesb.2012.04.012

Kevin A.Wepasnick, Billy A.Smith, Kaitlin E.Schrote, Hannah K.Wilson, Stephen R.Diegelmann, D.Howard Fairbrother (2011). Surface and structural characterization of multi-walled carbon nanotubes following different oxidative treatments. Carbon. Volume 49, Pages 24-36. https://doi.org/10.1016/j.carbon.2010.08.034

Y. Kim, Y. K. Kim, J. H. Kim, M. S. Yim, D. Harbottle, J. W. Lee (2018). Synthesis of functionalized porous montmorillonite via solid-state NaOH treatment for efficient removal of cesium and strontium ions. Appl Surf Sci, 450:404-412. https://doi/10.1016/j.apsusc.2018.04.181

V. B. Yadav, R. Gadi, S. Kalra (2019). Clay based nanocomposites for removal of heavy metals from water: A review. J. Environ. Manage., 232:803-817. https://doi.org/10.1016/j.jenvman.2018.11.120

H. Gu et al., (2013). Study of amino-functionalized mesoporous silica nanoparticles (NH 2-MSN) and polyamide-6 nanocomposites co-incorporated with NH2-MSN and organo-montmorillonite. Microporous and Mesoporous Materials, 170:226–234. https://doi.org/10.1016/j.micromeso.2012.12.010

L.Jacquie, (2022) Hand book IR. [Online]. “Chapter 17: IR Spectroscopy.”. Available: https://orgchemboulder.com/Labs/Experiments/HandbookIR.pdf

N. Mendel, D. Sîretanu, I. Sîretanu, D. W. F. Brilman, F. Mugele (2021). Interlayer Cation-Controlled Adsorption of Carbon Dioxide in Anhydrous Montmorillonite Clay. Journal of Physical Chemistry C, 125(49):27159-27169. https://doi.org/10.1021/acs.jpcc.1c06746

P. Nie, C. Min, H. J. Song, X. Chen, Z. Zhang, K. Zhao (2015). Preparation and tribological properties of polyimide/carboxyl-functionalized multi-walled carbon nanotube nanocomposite films under seawater lubrication. Tribol Lett, 58(1):1-12. https://doi.org/10.1007/s11249-015-0476-7

B. A. Fil, C. Özmetin, M. Korkmaz, B. A. Fil, C. Özmetin, M. Korkmaz (2014). Characterization and Electrokinetic Properties of Montmorillonite. [Online]. Available: https://www.researchgate.net/publication/274691527

S. Mohan et al., (2016). Completely green synthesis of silver nanoparticle decorated MWCNT and its antibacterial and catalytic properties. Pure and Applied Chemistry, 88(1-2):71-81. https://doi.org/10.1515/pac-2015-0602

R. L. Frost, L. Rintoul (1996). Lattice vibrations of montmorillonite: an FT Raman and X-ray diffraction study. Applied Clay Science. 11(2-4):171-183. https://doi.org/10.1016/S0169-1317(96)00017-8

A. Wang, J. J. Freeman, B. L. Jolliff (2015). Understanding the Raman spectral features of phyllosilicates. Journal of Raman Spectroscopy. 46(10):829-845. https://doi.org/10.1002/jrs.4680

P. Tang et al., (2022). Layered Montmorillonite/3D Carbon Nanotube Networks for Epoxy Composites with Enhanced Mechanical Strength and Thermal Properties. ACS Appl Nano Mater, 5(6):8343-8352. https://doi.org/10.1021/acsanm.2c01404

Downloads

Published

2022-12-27

How to Cite

Mandakhsaikhan, L., Anudari, D., Altantuya, O., & Oyun-Erdene, G. (2022). Synthesis of nanocomposite materials with montmorillonite and multiwalled carbon nanotubes. Bulletin of the Institute of Chemistry and Chemical Technology, 10(10), 100–106. https://doi.org/10.5564/bicct.v10i10.2601

Issue

Section

Articles