A mini-review of petroleum and sludge bioremediation using microorganisms
DOI:
https://doi.org/10.5564/pib.v39i1.3149Keywords:
Bioremediation, microorganisms, petroleum, sludgeAbstract
Bioremediation, a process led by microorganisms, is gaining prominence for its effectiveness in transforming environmental pollutants into harmless compounds, particularly in heavily contaminated areas. Microbes in polluted environments showcase impressive genetic and enzymatic adaptability, reducing toxicity. This approach offers a promising avenue for eco-friendly and cost-effective remediation, with intricate mechanisms and metabolic approaches that address various challenges, including petroleum contamination and sludge management, thus presenting sustainable solutions for environmental and waste management issues.
Нефтийн бүтээгдэхүүн, лагийн бохирдлыг бичил биетэн ашиглан бууруулсан судалгааны тойм өгүүлэл
Хураангуй. Бичил биетнээр биологийн нөхөн сэргээлт хийх нь хүрээлэн буй орчны бохирдлыг бууруулах, бохирдол ихтэй бүсийг хоргүйжүүлэх давуу талтай. Бохирдолтой орчноос ялган авсан бичил биетний генетикийн болон ферментийн дасан зохицох чадварыг ашиглан, бохирдлыг бууруулдаг. Энэхүү арга нь нефтийн бүтээгдэхүүний бохирдол, лагийг цэвэрлэхэд бичил биетний механизм, бодисын солилцоог ашиглан, байгаль орчинд ээлтэй, зардал багатай нөхөн сэргээх ирээдүйтэй арга замыг бий болгодог. Улмаар байгаль орчин, хог хаягдлын менежментийн асуудлыг шийдвэрлэх ач тустай.
Түлхүүр үгс: Биологийн нөхөн сэргээлт, бичил биетэн, нефтийн бүтээгдэхүүн, лаг
Downloads
143
References
P. K. Thassitou and I. S. Arvanitoyannis, “Bioremediation: A novel approach to food waste management,” Trends in Food Science & Technology, vol. 12, no. 5–6, pp. 185–196, 2001. https://doi.org/10.1016/s0924-2244(01)00081-4
J. Godheja, S. SK, S. A. Siddiqui, and M. DR, “Xenobiotic compounds present in soil and water: A review on Remediation Strategies,” Journal of Environmental & Analytical Toxicology, vol. 6, no. 5, 2016. https://doi.org/10.4172/2161-0525.1000392
N. Jamil, P. Kumar, and R. Batool, Soil Microenvironment for Bioremediation and Polymer Production. Beverly, MA: Scrivener Publishing, 2020.
N. Ahalya, T. V. Ramachandra, and R. D. Kanamadi, “Biosorption of Heavy Metals,” Research Journal Of Chemistry And Environment, vol. 7, no. 4, pp. 71–78, Dec. 2003.
R. R. Wong et al., “Diesel in Antarctica and a bibliometric study on its indigenous microorganisms as remediation agent,” International Journal of Environmental Research and Public Health, vol. 18, no. 4, p. 1512, 2021. https://doi.org/10.3390/ijerph18041512
C. Li et al., “Biodegradation of crude oil by a newly isolated strain Rhodococcus sp.. JZX-01,” Applied Biochemistry and Biotechnology, vol. 171, no. 7, pp. 1715–1725, 2013. https://doi.org/10.1007/s12010-013-0451-4
T. Gu, S. O. Rastegar, S. M. Mousavi, M. Li, and M. Zhou, “Advances in bioleaching for recovery of metals and bioremediation of fuel ash and sewage sludge,” Bioresource Technology, vol. 261, pp. 428–440, 2018. https://doi.org/10.1016/j.biortech.2018.04.033
L. Romero-Zerón, Advances in Enhanced Oil Recovery Processes. INTECH Open Access Publisher, 2012.
K. Singh and S. Chandra, “Treatment of petroleum hydrocarbon polluted environment through bioremediation: A Review,” Pakistan Journal of Biological Sciences, vol. 17, no. 1, pp. 1–8, 2013. https://doi.org/10.3923/pjbs.2014.1.8
Marinescu. M, Toti. M, Tanase. V, Carabulea. V, Plopeanu. G, and Calciu. I, “An assessment of the effects of crude oil pollution on soil properties,” Food Science and Technology, vol. 11, no 1, pp. 94-99, 2010.
V. Pecina et al., “The impacts of mining on soil pollution with metal(loid)s in resource-rich Mongolia,” Scientific Reports, vol. 13, no. 1, 2023. https://doi.org/10.1038/s41598-023-29370-w
G. K. Bekele et al., “Isolation and characterization of diesel-degrading bacteria from hydrocarbon-contaminated sites, flower farms, and Soda Lakes,” International Journal of Microbiology, vol. 2022, pp. 1–12, 2022. https://doi.org/10.1155/2022/5655767
M. Abdulrasheed et al., “Biodegradation of diesel oil by cold-adapted bacterial strains of arthrobacter spp. from Antarctica,” Antarctic Science, vol. 32, no. 5, pp. 341–353, 2020. https://doi.org/10.1017/s0954102020000206
J. K. Fredrickson et al., “Geomicrobiology of high-level nuclear waste-contaminated vadose sediments at the Hanford Site, Washington State,” Applied and Environmental Microbiology, vol. 70, no. 7, pp. 4230–4241, 2004. https://doi.org/10.1128/aem.70.7.4230-4241.2004
M. C. Deng et al., “Isolation and characterization of a novel hydrocarbon-degrading bacterium Achromobacter sp.. HZ01 from the crude oil-contaminated seawater at the Daya Bay, Southern China,” Marine Pollution Bulletin, vol. 83, no. 1, pp. 79–86, 2014. https://doi.org/10.1016/j.marpolbul.2014.04.018
A. Dwivedi, S. Chitranshi, A. Gupta, A. Kumar, and J. L. Bhat, “Assessment of the petroleum oil degradation capacity of indigenous bacterial species isolated from petroleum oil-contaminated soil,” International Journal of Environmental Research, vol. 13, no. 4, pp. 735–746, 2019. https://doi.org/10.1007/s41742-019-00210-y
S. Ferhat et al., “Screening and preliminary characterization of biosurfactants produced by Ochrobactrum sp. 1C and Brevibacterium sp. 7G isolated from hydrocarbon-contaminated soils,” International Biodeterioration & Biodegradation, vol. 65, no. 8, pp. 1182–1188, 2011. https://doi.org/10.1016/j.ibiod.2011.07.013
W. Yi-Bin et al., “Composition and regulation of thylakoid membrane of Antarctic ice microalgae Chlamydomonas sp. ICE-L in response to low-temperature environment stress,” Journal of the Marine Biological Association of the United Kingdom, vol. 97, no. 6, pp. 1241–1249, 2016. https://doi.org/10.1017/s0025315416000588
M. H. Hemmat-Jou, A. A. Safari-Sinegani, A. Mirzaie-Asl, and A. Tahmourespour, “Analysis of microbial communities in heavy metals-contaminated soils using the metagenomic approach,” Ecotoxicology, vol. 27, no. 9, pp. 1281–1291, 2018. https://doi.org/10.1007/s10646-018-1981-x
I. Saadoun, M. J. Mohammad, K. M. Hameed, and M. Shawaqfah, “Microbial populations of crude oil spill polluted soils at the jordan-iraq desert (the badia region),” Brazilian Journal of Microbiology, vol. 39, no. 3, pp. 453–456, 2008. https://doi.org/10.1590/s1517-83822008000300008
A. Zhou, Y. Zhang, T. Dong, X. Lin, and X. Su, “Response of the microbial community to seasonal groundwater level fluctuations in petroleum hydrocarbon-contaminated groundwater,” Environmental Science and Pollution Research, vol. 22, no. 13, pp. 10094–10106, 2015. https://doi.org/10.1007/s11356-015-4183-6
E. A. Rodgers-Vieira, Z. Zhang, A. C. Adrion, A. Gold, and M. D. Aitken, “Identification of anthraquinone-degrading bacteria in soil contaminated with polycyclic aromatic hydrocarbons,” Applied and Environmental Microbiology, vol. 81, no. 11, pp. 3775–3781, 2015. https://doi.org/10.1128/aem.00033-15
N. Hamamura, S. H. Olson, D. M. Ward, and W. P. Inskeep, “Microbial population dynamics associated with crude-oil biodegradation in diverse soils,” Applied and Environmental Microbiology, vol. 72, no. 9, pp. 6316–6324, 2006. https://doi.org/10.1128/aem.01015-06
M. Sathishkumar, A. R. Binupriya, S. H. Baik, and S. E. Yun, “Biodegradation of crude oil by individual bacterial strains and a mixed bacterial consortium isolated from hydrocarbon contaminated areas,” CLEAN – Soil, Air, Water, vol. 36, no. 1, pp. 92–96, 2008. https://doi.org/10.1002/clen.200700042
S. Ibrahim et al., “Optimisation of biodegradation conditions for waste canola oil by cold-adapted Rhodococcus sp. aq5-07 from Antarctica,” Electronic Journal of Biotechnology, vol. 48, pp. 1–12, 2020. https://doi.org/10.1016/j.ejbt.2020.07.005
A. F. Roslee et al., “Statistical optimisation of growth conditions and diesel degradation by the Antarctic bacterium, Rhodococcus sp. strain AQ5‒07,” Extremophiles, vol. 24, no. 2, pp. 277–291, 2019. https://doi.org/10.1007/s00792-019-01153-0
C. Y. Fan and S. Krishnamurthy, “Enzymes for enhancing bioremediation of petroleum-contaminated soils: A brief review,” Journal of the Air & Waste Management Association, vol. 45, no. 6, pp. 453–460, 1995. https://doi.org/10.1080/10473289.1995.10467375
S. H. Mirdamadian and G. Emtiazi, “Biodegradation of petroleum and aromatic hydrocarbons by bacteria isolated from petroleum-contaminated soil,” Journal of Petroleum & Environmental Biotechnology, vol. 1, no. 1, 2010. https://doi.org/10.4172/2157-7463.1000102
A. C. Smith and M. A. Hussey, “Gram stain,” Van Nostrand’s Encyclopedia of Chemistry, pp. 113–144, 2005. https://doi.org/10.1002/0471740039.vec1189
R. N. Austin and A. V. Callaghan, “Microbial enzymes that oxidize hydrocarbons,” Frontiers in Microbiology, vol. 4, 2013. https://doi.org/10.3389/fmicb.2013.00338
W. Gao et al., “Marinobacter nanhaiticus sp. nov., polycyclic aromatic hydrocarbon-degrading bacterium isolated from the sediment of the South China Sea,” Antonie van Leeuwenhoek, vol. 103, no. 3, pp. 485–491, 2012. https://doi.org/10.1007/s10482-012-9830-z
N. B. Huu, E. B. Denner, D. T. Ha, G. Wanner, and H. Stan-Lotter, “Marinobacter aquaeolei sp. nov., a halophilic bacterium isolated from a Vietnamese oil-producing well,” International Journal of Systematic and Evolutionary Microbiology, vol. 49, no. 2, pp. 367–375, 1999. https://doi.org/10.1099/00207713-49-2-367
C. D. Miller et al., “Isolation and characterization of polycyclic aromatic hydrocarbon - degrading mycobacterium isolates from soil,” Microbial Ecology, vol. 48, no. 2, pp. 230–238, 2004. https://doi.org/10.1007/s00248-003-1044-5
K. P. Nilesh and H. Pethapara, “Isolation and molecular identification of hydrocarbon degrading bacteria from oil-contaminated soil,” International Journal of Biosciences (IJB), vol. 11, no. 4, pp. 272–283, 2017. https://doi.org/10.12692/ijb/11.4.272-283
C. A. Baraniecki, J. Aislabie, and J. M. Foght, “Characterization of sphingomonas sp.. ant 17, an aromatic hydrocarbon-degrading bacterium isolated from Antarctic soil,” Microbial Ecology, vol. 43, no. 1, pp. 44–54, 2002. https://doi.org/10.1007/s00248-001-1019-3
L. Ciric, J. C. Philp, and A. S. Whiteley, “Hydrocarbon utilization within a diesel-degrading bacterial consortium,” FEMS Microbiology Letters, vol. 303, no. 2, pp. 116–122, 2010. https://doi.org/10.1111/j.1574-6968.2009.01871.x
E. Koshlaf and A. S Ball, “Soil bioremediation approaches for petroleum hydrocarbon polluted environments,” AIMS Microbiology, vol. 3, no. 1, pp. 25–49, 2017. https://doi.org/10.3934/microbiol.2017.1.25
A. Gran-Scheuch, E. Fuentes, D. M. Bravo, J. C. Jiménez, and J. M. Pérez-Donoso, “Isolation and characterization of phenanthrene degrading bacteria from diesel fuel-contaminated Antarctic soils,” Frontiers in Microbiology, vol. 8, 2017. https://doi.org/10.3389/fmicb.2017.01634
Chithra. S. Chithra. S and H. Shenpagam. N, “Isolation and identification of oil degrading bacteria from oil contaminated soil and comparison of their bioremediation potential,” Global Journal For Research Analysis, vol. 3, no. 8, pp. 181–184, 2012. https://doi.org/10.15373/22778160/august2014/61
Shukor, M., Dahalan, F., Jusoh, A., Muse, R., Shamaan, N., Syed, M, “Characterization of petroleum hydrocarbon degradation by a Sphingomonas sp. 3y isolated from a diesel-contaminated site.,” Journal of Life Science, vol. 19, no. 5, pp. 659–663, 2009. https://doi.org/10.5352/jls.2009.19.5.659
D. K. Chaudhary, D.-U. Kim, D. Kim, and J. Kim, “Flavobacterium Petrolei sp. nov., a novel psychrophilic, diesel-degrading bacterium isolated from oil-contaminated Arctic soil,” Scientific Reports, vol. 9, no. 1, 2019. https://doi.org/10.1038/s41598-019-40667-7
F. Solano-Serena et al., “A mycobacterium strain with extended capacities for degradation of gasoline hydrocarbons,” Applied and Environmental Microbiology, vol. 66, no. 6, pp. 2392–2399, 2000. https://doi.org/10.1128/aem.66.6.2392-2399.2000
D. Wang, J. Lin, J. Lin, W. Wang, and S. Li, “Biodegradation of petroleum hydrocarbons by Bacillus subtilis BL-27, a strain with weak hydrophobicity,” Molecules, vol. 24, no. 17, p. 3021, 2019. https://doi.org/10.3390/molecules24173021
M. T. Bidja Abena et al., “Crude oil biodegradation by newly isolated bacterial strains and their consortium under Soil Microcosm experiment,” Applied Biochemistry and Biotechnology, vol. 189, no. 4, pp. 1223–1244, 2019. https://doi.org/10.1007/s12010-019-03058-2
D. Wolicka, A. Suszek, A. Borkowski, and A. Bielecka, “Application of aerobic microorganisms in bioremediation in situ of soil contaminated by petroleum products,” Bioresource Technology, vol. 100, no. 13, pp. 3221–3227, 2009. https://doi.org/10.1016/j.biortech.2009.02.020
D. K. Chaudhary, D. U. Kim, D. Kim, and J. Kim, “Flavobacterium petrolei sp. nov., a novel psychrophilic, diesel-degrading bacterium isolated from oil-contaminated Arctic soil,” Scientific Reports, vol. 9, no. 1, 2019. https://doi.org/10.1038/s41598-019-40667-7
T. Wu et al., “Pseudomonas aeruginosa L10: A hydrocarbon-degrading, biosurfactant-producing, and plant-growth-promoting endophytic bacterium isolated from a reed (phragmites australis),” Frontiers in Microbiology, vol. 9, 2018. https://doi.org/10.3389/fmicb.2018.01087
X. Xu et al., “Potential biodegradation of phenanthrene by isolated halotolerant bacterial strains from petroleum oil polluted soil in Yellow River Delta,” Science of The Total Environment, vol. 664, pp. 1030–1038, 2019. https://doi.org/10.1016/j.scitotenv.2019.02.080
A. Lara-Moreno et al., “Novel nonylphenol-degrading bacterial strains isolated from sewage sludge: Application in bioremediation of sludge,” Science of The Total Environment, vol. 847, p. 157647, 2022. https://doi.org/10.1016/j.scitotenv.2022.157647
S. O. Rastegar, S. M. Mousavi, and S. A. Shojaosadati, “Bioleaching of an oil-fired residual: Process optimization and nanostructure NaV6O15 synthesis from the Bioleachate,” RSC Advances, vol. 5, no. 51, pp. 41088–41097, 2015. https://doi.org/10.1039/c5ra00128e
S. O. Rastegar, S. M. Mousavi, S. A. Shojaosadati, and T. Gu, “Bioleaching of fuel-oil ash using Acidithiobacillus thiooxidans in shake flasks and a slurry bubble column bioreactor,” RSC Advances, vol. 6, no. 26, pp. 21756–21764, 2016. https://doi.org/10.1039/c5ra24861b
A. Seidel, Y. Zimmels, and R. Armon, “Mechanism of bioleaching of coal fly ash by thiobacillus thiooxidans,” Chemical Engineering Journal, vol. 83, no. 2, pp. 123–130, 2001. https://doi.org/10.1016/s1385-8947(00)00256-4
Zolbootsetseg. D, Mend-Amar. M, Erdenechimeg. Sh, Urjinlham. R, Rentsenkhand. Ts, Dugarjav. J, “Research on deodorizing and processing of sludge into fertilizer” Electricals and Engineering, vol. 8, no. 222, pp. 44-48. 2022.
M. Y. Jasmin, F. Syukri, M. S. Kamarudin, and M. Karim, “Potential of bioremediation in treating aquaculture sludge: Review article,” Aquaculture, vol. 519, pp. 734905, 2020. https://doi.org/10.1016/j.aquaculture.2019.734905
Latt, U. Win. “Shrimp pond waste management.” Aquaculture Asia, vol. 7, no. 3, pp. 11-48, 2002.
S. J. Cripps and A. Bergheim, “Solids management and removal for intensive land-based Aquaculture Production Systems,” Aquacultural Engineering, vol. 22, no. 1–2, pp. 33–56, 2000. https://doi.org/10.1016/s0144-8609(00)00031-5
J. M. Ebeling and M. B. Timmons, “Recirculating Aquaculture Systems,” Aquaculture Production Systems, pp. 245–277, 2012. https://doi.org/10.1002/9781118250105.ch11
T. J. Abraham, S. Ghosh, T. S. Nagesh, and D. Sasmal, “Distribution of bacteria involved in nitrogen and sulphur cycles in shrimp culture systems of West Bengal, India,” Aquaculture, vol. 239, no. 1–4, pp. 275–288, 2004. https://doi.org/10.1016/j.aquaculture.2004.06.023
S. GHOSH, A. SINHA, and C. SAHU, “Dietary probiotic supplementation in growth and health of live-bearing ornamental fishes,” Aquaculture Nutrition, vol. 14, no. 4, pp. 289–299, 2008. https://doi.org/10.1111/j.1365-2095.2007.00529.x
R. S. Porubcan, Reduction of ammonia nitrogen and nitrite in tanks of Penaeus monodon using floating biofilters containing processed diatomaceous earth media pre-inoculated with nitrifying bacteria. In Proceedings of the Program and Abastracts of the 22nd Annual Conference and Exposition, World Aquaculture Society, pp. 16-20. 1991.
F. Xie et al., “Using bacillus amyloliquefaciens for remediation of aquaculture water,” SpringerPlus, vol. 2, no. 1, 2013. https://doi.org/10.1186/2193-1801-2-119
C. H. Yu, Y. Wang, T. Guo, W. X. Shen, and M. X. Gu, “Isolation and identification of ammonia nitrogen degradation strains from industrial wastewater,” Engineering, vol. 04, no. 11, pp. 790–793, 2012. https://doi.org/10.4236/eng.2012.411101
K. A. Mohamad, S. Y. Mohd, R. S. Sarah, H. Z. Mohd, and A. Rasyidah, “Total nitrogen and total phosphorus removal from brackish aquaculture wastewater using effective microorganism,” AIP Conference Proceedings, 2017. https://doi.org/10.1063/1.5002321
B. Zhu et al., “Effects of marichromatium gracile YL28 on the nitrogen management in the Aquaculture Pond Water,” Bioresource Technology, vol. 292, p. 121917, 2019. https://doi.org/10.1016/j.biortech.2019.121917
J. Sarkar et al., “Biostimulation of Indigenous Microbial Community for bioremediation of Petroleum Refinery Sludge,” Frontiers in Microbiology, vol. 7, 2016. https://doi.org/10.3389/fmicb.2016.01407
C. Y. Ke et al., “Bioremediation of oily sludge by solid complex bacterial agent with a combined two-step process,” Ecotoxicology and Environmental Safety, vol. 208, p. 111673, 2021. https://doi.org/10.1016/j.ecoenv.2020.111673
N. Vasudevan and P. Rajaram, “Bioremediation of oil sludge-contaminated soil,” Environment International, vol. 26, no. 5–6, pp. 409–411, 2001. https://doi.org/10.1016/S0160-4120(01)00020-4
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Dorjjugder Nasanjargal
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright on any research article in the Proceedings of the Institute of Biology is retained by the author(s).
The authors grant the Proceedings of the Institute of Biology license to publish the article and identify itself as the original publisher.
Articles in the Proceedings of the Institute of Biology are Open Access articles published under a Creative Commons Attribution-NonCommercial 4.0 International License - CC BY NC.
This license permits use, distribution and reproduction in any medium, provided the original work is properly cited.