Importance of genetic analysis and genomic tools for wildlife conservation
DOI:
https://doi.org/10.5564/pib.v39i1.3148Keywords:
RADseq, GTseq, NGS, SNP, conservation managementAbstract
Around 2.16 million species have been discovered on the earth to date. Among them over 42000 species are threatened for extinction. Conservation biology is a field of study focusing on the protection of biodiversity and the viability of wildlife populations. It plays a crucial role in understanding and conserving endangered species and maintaining overall biodiversity. The International Convention on Biological Diversity (CBD) states that biodiversity should be protected at three levels: ecosystems, species, and genes. Hence, the first step of conservation would be an assessment of its diversity. Conservation biologists have been using genetics and in recent years, genomics techniques to assess the genetic diversity of wildlife. Here we discuss not only some important concepts of population genetics but also the role of using genetics and genomics in conserving wildlife and its importance in planning genetic management.
Байгаль хамгаалахад генетикийн шинжилгээ, геномын арга хэрэгслийн ач холбогдол
Хураангуй. Өнөөдрийг хүртэл дэлхий дээр 2.16 сая орчим зүйлийг илрүүлжээ. Эдгээрээс 42000 гаруй зүйл устах аюулд ороод байна. Хамгааллын биологи нь биологийн олон янз байдлыг хамгаалах, зэрлэг ан амьтдын популяцийн амьдрах чадварыг судлахад чиглэсэн судалгааны салбар бөгөөд ховордсон амьтдын талаар судлах, хамгаалах, биологийн олон янз байдлыг бүхэлд нь хадгалахад чухал үүрэг гүйцэтгэдэг. Биологийн олон янз байдлын тухай олон улсын конвенцид биологийн олон янз байдлыг экосистем, зүйл, ген гэсэн гурван түвшинд хамгаалах ёстой гэж заасан байдаг. Тиймээс байгаль хамгаалах эхний алхам бол түүний олон янз байдлыг үнэлэх явдал юм. Хамгааллын биологичид зэрлэг ан амьтдын генетикийн олон янз байдлыг үнэлэхийн тулд генетикийн аргазүйг, сүүлийн жилүүдэд геномикийн аргыг ашиглаж байна. Энэ тойм өгүүлэлд популяцийн генетикийн зарим чухал ойлголтуудыг төдийгүй зэрлэг ан амьтдыг хамгаалахад генетик, геномиксийн аргуудыг ашиглах үүрэг болон генетикийн менежментийг төлөвлөхөд түүний ач холбогдлын талаар бичив.
Түлхүүр үгс: RADseq, GTseq, NGS, нэг нуклеотидын полиморфизм (SNP), хамгааллын менежмент
Downloads
231
References
A. D. Chapman, “Numbers of living species in Australia and the world,” 2009.
C. Mora, D. P. Tittensor, S. Adl, A. G. Simpson, and B. Worm, “How many species are there on Earth and in the ocean?,” PLoS biology, vol. 9, no. 8, p. e1001127, 2011, https://doi.org/10.1371/journal.pbio.1001127
M. J. Costello, R. M. May, and N. E. Stork, “Can we name Earth’s species before they go extinct?,” science, vol. 339, no. 6118, pp. 413-416, 2013, https://doi.org/10.1126/science.123031.
B. R. Scheffers, L. N. Joppa, S. L. Pimm, and W. F. Laurance, “What we know and don’t know about Earth’s missing biodiversity,” Trends in ecology & evolution, vol. 27, no. 9, pp. 501-510, 2012, https://doi.org/10.1016/j.tree.2012.05.008
R. l. IUCN, 2022.
R. Frankham, D. A. Briscoe, and J. D. Ballou, Introduction to conservation genetics. Cambridge university press, 2002, https://doi.org/10.1017/CBO9780511808999
B. Charlesworth and D. Charlesworth, “Elements of evolutionary genetics. Roberts and Company Publishers,” ed: Greenwood Village, CO, 2010.
A. M. Harder, J. R. Willoughby, and J. M. Doyle, “Peppered Moths and the Industrial Revolution.”
D. J. Futuyma, “Natural selection and adaptation,” Evolution, pp. 279-301, 2009.
D. H. Reed and R. Frankham, “Correlation between fitness and genetic diversity,” Conservation biology, vol. 17, no. 1, pp. 230-237, 2003, https://doi.org/10.1046/j.1523-1739.2003.01236.x
P. Beier, “A focal species for conservation planning,” Cougar: Ecology and Conservation’.(Eds M. Hornocker and S. Negri.) pp, pp. 177-189, 2009.
J. L. Bouzat, “Conservation genetics of population bottlenecks: the role of chance, selection, and history,” Conservation Genetics, vol. 11, pp. 463-478, 2010, https://doi.org/10.1007/s10592-010-0049-0
T. C. Rick et al., “Where were the northern elephant seals? Holocene archaeology and biogeography of Mirounga angustirostris,” The Holocene, vol. 21, no. 7, pp. 1159-1166, 2011, https://doi.org/10.1177/0959683611400463
J. Armengaud, J. Trapp, O. Pible, O. Geffard, A. Chaumot, and E. M. Hartmann, “Non-model organisms, a species endangered by proteogenomics,” Journal of proteomics, vol. 105, pp. 5-18, 2014, https://doi.org/10.1016/j.jprot.2014.01.007
J. J. Russell et al., “Non-model model organisms,” BMC biology, vol. 15, no. 1, pp. 1-31, 2017, https://doi.org/10.1186/s12915-017-0391-5
F. W. Allendorf, P. A. Hohenlohe, and G. Luikart, “Genomics and the future of conservation genetics,” Nature reviews genetics, vol. 11, no. 10, pp. 697-709, 2010, https://doi.org/10.1038/nrg2844
A. B. Shafer et al., “Genomics and the challenging translation into conservation practice,” Trends in ecology & evolution, vol. 30, no. 2, pp. 78-87, 2015, https://doi.org/10.1016/j.tree.2014.11.009
F. Allendorf, “Small populations and genetic drift. In ‘Conservation and the genomics of populations’. (Eds FW Allendorf, WC Funk, SN Aitken, M Byrne, G Luikart) pp. 113–132,” ed: Oxford University Press: Oxford, 2022, https://doi.org/10.1093/oso/9780198856566.003.0006
P. Abdul-Muneer, “Application of microsatellite markers in conservation genetics and fisheries management: recent advances in population structure analysis and conservation strategies,” Genetics research international, vol. 2014, 2014, https://doi.org/10.1155%2F2014%2F691759
C. Baker, F. Cipriano, and S. Palumbi, “Molecular genetic identification of whale and dolphin products from commercial markets in Korea and Japan,” Molecular ecology, vol. 5, no. 5, pp. 671-685, 1996, http://doi.org/10.1111/j.1365-294X.1996.tb00362.x
S. M. Ferreira, C. Greaver, G. A. Knight, M. H. Knight, I. P. Smit, and D. Pienaar, “Disruption of rhino demography by poachers may lead to population declines in Kruger National Park, South Africa,” PLoS One, vol. 10, no. 6, p. e0127783, 2015, https://doi.org/10.1371/journal.pone.0127783
C. Schlötterer, “The evolution of molecular markers—just a matter of fashion?,” Nature reviews genetics, vol. 5, no. 1, pp. 63-69, 2004, https://doi.org/10.1038/nrg1249
J. C. Avise, “Mitochondrial DNA and the evolutionary genetics of higher animals,” Philosophical Transactions of the Royal Society of London. B, Biological Sciences, vol. 312, no. 1154, pp. 325-342, 1986, https://doi.org/10.1098/rstb.1986.0011
J. C. Avise, C. Giblin-Davidson, J. Laerm, J. C. Patton, and R. A. Lansman, “Mitochondrial DNA clones and matriarchal phylogeny within and among geographic populations of the pocket gopher, Geomys pinetis,” Proceedings of the National Academy of Sciences, vol. 76, no. 12, pp. 6694-6698, 1979, https://doi.org/10.1073/pnas.76.12.6694
K. Srikulnath et al., “Asian Elephant Evolutionary Relationships: New Perspectives from Mitochondrial D-Loop Haplotype Diversity,” Sustainability, vol. 15, no. 1, p. 720, 2022, http://dx.doi.org/10.3390/su15010720
T. Bilguun, B. Delgerzul, Z. Unudbayasgalan, B. Galbadrakh, and B. Tserendulam, “Genetic analysis of mitochondrial ND5 gene of siberian ibex (Capra sibirica Pallas, 1776) population in Mongolia,” Proceedings of the Mongolian Academy of Sciences, pp. 48-53, 2019, http://dx.doi.org/10.5564/pmas.v59i3.1246
B. Delgerzul, Z. Unudbayasgalan, T. Bilguun, C. Battsetseg, B. Galbadrahk, and B. Tserendulam, “Genetic comparison of Altai and Gobi argali sheep (Ovis ammon) populations using mitochondrial and microsatellite markers: Implication on conservation,” Proceedings of the Mongolian Academy of Sciences, pp. 54-61, 2019, https://doi.org/10.5564/pmas.v59i3.1247
P. D. Hebert, S. Ratnasingham, and J. R. De Waard, “Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species,” Proceedings of the Royal Society of London. Series B: Biological Sciences, vol. 270, no. suppl_1, pp. S96-S99, 2003, https://doi.org/10.1098%2Frsbl.2003.0025
W. J. Kress, K. J. Wurdack, E. A. Zimmer, L. A. Weigt, and D. H. Janzen, “Use of DNA barcodes to identify flowering plants,” Proceedings of the National Academy of Sciences, vol. 102, no. 23, pp. 8369-8374, 2005.
S. R. Clegg, “Modern organizations: Organization studies in the postmodern world,” Modern Organizations, pp. 1-272, 1990.
R. J. Petit, J. Duminil, S. Fineschi, A. Hampe, D. Salvini, and G. G. Vendramin, “Invited review: comparative organization of chloroplast, mitochondrial and nuclear diversity in plant populations,” Molecular Ecology, vol. 14, no. 3, pp. 689-701, 2005, https://doi.org/10.1111/j.1365-294X.2004.02410.x
J. R. Powell, “Molecular techniques in population genetics: a brief history,” in Molecular ecology and evolution: Approaches and applications: Springer, 1994, pp. 131-156, https://doi.org/10.1007/978-3-0348-7527-1_8
J. Shaw, H. L. Shafer, O. R. Leonard, M. J. Kovach, M. Schorr, and A. B. Morris, “Chloroplast DNA sequence utility for the lowest phylogenetic and phylogeographic inferences in angiosperms: the tortoise and the hare IV,” American Journal of Botany, vol. 101, no. 11, pp. 1987-2004, 2014, https://doi.org/10.3732/ajb.1400398
J. Tonti‐Filippini, P. G. Nevill, K. Dixon, and I. Small, “What can we do with 1000 plastid genomes?,” vol. 90, ed: Wiley Online Library, 2017, pp. 808-818, https://doi.org/10.1111/tpj.13491
M. W. Nachman and J. B. Searle, “Why is the house mouse karyotype so variable?,” Trends in ecology & evolution, vol. 10, no. 10, pp. 397-402, 1995, https://doi.org/10.1016/S0169-5347(00)89155-7
L. H. Rieseberg, “Chromosomal rearrangements and speciation,” Trends in ecology & evolution, vol. 16, no. 7, pp. 351-358, 2001, https://doi.org/10.1016/S0169-5347(01)02187-5
M. Wellenreuther and L. Bernatchez, “Eco-evolutionary genomics of chromosomal inversions,” Trends in ecology & evolution, vol. 33, no. 6, pp. 427-440, 2018, https://doi.org/10.1016/j.tree.2018.04.002
J. D. Rising and G. F. Shields, “Chromosomal and morphological correlates in two New World sparrows (Emberizidae),” Evolution, pp. 654-662, 1980, https://doi.org/10.1111/j.1558-5646.1980.tb04004.x
H. C. Hauffe and J. B. Searle, “Chromosomal heterozygosity and fertility in house mice (Mus musculus domesticus) from Northern Italy,” Genetics, vol. 150, no. 3, pp. 1143-1154, 1998, https://doi.org/10.1093/genetics/150.3.1143
B. C. Husband and H. A. Sabara, “Reproductive isolation between autotetraploids and their diploid progenitors in fireweed, Chamerion angustifolium (Onagraceae),” New Phytologist, vol. 161, no. 3, pp. 703-713, 2004, https://doi.org/10.1046/j.1469-8137.2004.00998.x
M. A. Ferguson-Smith and V. Trifonov, “Mammalian karyotype evolution,” Nature Reviews Genetics, vol. 8, no. 12, pp. 950-962, 2007, https://doi.org/10.1038/nrg2199
A. A. Hoffmann and L. H. Rieseberg, “Revisiting the impact of inversions in evolution: from population genetic markers to drivers of adaptive shifts and speciation?,” Annual review of ecology, evolution, and systematics, vol. 39, pp. 21-42, 2008, https://doi.org/10.1146/annurev.ecolsys.39.110707.173532
M. Eldridge and R. Close, “Taxonomy of rock wallabies, Petrogale (Marsupialia, Macropodidae). 1. A revision of the Eastern Petrogale with the description of 3 new species,” Australian Journal of Zoology, vol. 40, no. 6, pp. 605-625, 1992, http://dx.doi.org/10.1071/ZO9920605
J. E. Deakin et al., “Chromosomics: Bridging the gap between genomes and chromosomes,” Genes, vol. 10, no. 8, p. 627, 2019, https://doi.org/10.3390/genes10080627
J. M. Churko, G. L. Mantalas, M. P. Snyder, and J. C. Wu, “Overview of high throughput sequencing technologies to elucidate molecular pathways in cardiovascular diseases,” Circ Res, vol. 112, no. 12, pp. 1613-23, Jun 7 2013, https://doi.org/10.1161/circresaha.113.300939
M. Wellenreuther, C. Mérot, E. Berdan, and L. Bernatchez, “Going beyond SNPs: The role of structural genomic variants in adaptive evolution and species diversification,” Molecular ecology, vol. 28, no. 6, pp. 1203-1209, 2019, https://doi.org/10.1111/mec.15066
M. C. Fischer et al., “Estimating genomic diversity and population differentiation - an empirical comparison of microsatellite and SNP variation in Arabidopsis halleri,” BMC Genomics, vol. 18, no. 1, p. 69, Jan 11 2017, https://doi.org/10.1186/s12864-016-3459-7
B. E. Slatko, A. F. Gardner, and F. M. Ausubel, “Overview of next‐generation sequencing technologies,” Current protocols in molecular biology, vol. 122, no. 1, p. e59, 2018, https://doi.org/10.1002/cpmb.59
O. Akintunde, T. Tucker, and V. J. Carabetta, “The evolution of next-generation sequencing technologies,” arXiv preprint arXiv:2305.08724, 2023.
T. Xiao and W. Zhou, “The third generation sequencing: the advanced approach to genetic diseases,” Translational pediatrics, vol. 9, no. 2, p. 163, 2020, https://doi.org/10.21037/tp.2020.03.06
M. Kardos and A. B. Shafer, “The peril of gene-targeted conservation,” Trends in ecology & evolution, vol. 33, no. 11, pp. 827-839, 2018, https://doi.org/10.1016/j.tree.2018.08.011
J. M. Catchen, P. A. Hohenlohe, L. Bernatchez, W. C. Funk, K. R. Andrews, and F. W. Allendorf, “Unbroken: RADseq remains a powerful tool for understanding the genetics of adaptation in natural populations,” Molecular ecology resources, vol. 17, no. 3, pp. 362-365, 2017, https://doi.org/10.1111/1755-0998.12669
K. R. Andrews et al., “A bioinformatic pipeline for identifying informative SNP panels for parentage assignment from RAD seq data,” Molecular Ecology Resources, vol. 18, no. 6, pp. 1263-1281, 2018, https://doi.org/10.1111/1755-0998.12910.
S. J. Amish et al., “Rapid SNP genotyping, sex identification, and hybrid-detection in threatened bull trout,” Conservation Genetics Resources, vol. 14, no. 4, pp. 421-427, 2022, https://doi.org/10.1007/s12686-022-01289-w.
W. C. Funk, J. K. McKay, P. A. Hohenlohe, and F. W. Allendorf, “Harnessing genomics for delineating conservation units,” Trends in ecology & evolution, vol. 27, no. 9, pp. 489-496, 2012, https://doi.org/10.1016/j.tree.2012.05.012.
S. P. Flanagan, B. R. Forester, E. K. Latch, S. N. Aitken, and S. Hoban, “Guidelines for planning genomic assessment and monitoring of locally adaptive variation to inform species conservation,” Evolutionary applications, vol. 11, no. 7, pp. 1035-1052, 2018, https://doi.org/10.1111/eva.12569.
N. R. Campbell, S. A. Harmon, and S. R. Narum, “Genotyping‐in‐Thousands by sequencing (GT‐seq): A cost effective SNP genotyping method based on custom amplicon sequencing,” Molecular ecology resources, vol. 15, no. 4, pp. 855-867, 2015, https://doi.org/10.1111/1755-0998.12357.
H. Enoki, “The construction of psedomolecules of a commercial strawberry by DeNovoMAGIC and new genotyping technology, GRAS-Di,” in Plant and Animal Genome XXVII Conference (January 12-16, 2019), 2019: PAG.
S. Hosoya et al., “Random PCR‐based genotyping by sequencing technology GRAS‐Di (genotyping by random amplicon sequencing, direct) reveals genetic structure of mangrove fishes,” Molecular ecology resources, vol. 19, no. 5, pp. 1153-1163, 2019, https://doi.org/10.1111/1755-0998.13025
Y. Miki et al., “GRAS-Di system facilitates high-density genetic map construction and QTL identification in recombinant inbred lines of the wheat progenitor Aegilops tauschii,” Scientific Reports, vol. 10, no. 1, p. 21455, 2020, https://doi.org/10.1038/s41598-020-78589-4
K. Nishimura et al., “MIG-seq is an effective method for high-throughput genotyping in wheat (Triticum spp.),” DNA Research, vol. 29, no. 2, p. dsac011, 2022, https://doi.org/10.1093/dnares/dsac011
S. L. Hoffberg et al., “RAD cap: sequence capture of dual‐digest RAD seq libraries with identifiable duplicates and reduced missing data,” Molecular ecology resources, vol. 16, no. 5, pp. 1264-1278, 2016, https://doi.org/10.1111/1755-0998.12566
O. A. Ali et al., “RAD capture (Rapture): flexible and efficient sequence-based genotyping,” Genetics, vol. 202, no. 2, pp. 389-400, 2016, https://doi.org/10.1534/genetics.115.183665
M. H. Meek and W. A. Larson, “The future is now: Amplicon sequencing and sequence capture usher in the conservation genomics era,” ed: Wiley Online Library, 2019, https://doi.org/10.1111/1755-0998.12998
T. LaFramboise, “Single nucleotide polymorphism arrays: a decade of biological, computational and technological advances,” Nucleic acids research, vol. 37, no. 13, pp. 4181-4193, 2009, https://doi.org/10.1093/nar/gkp552
J. M. Doyle et al., “Genetic structure and viability selection in the golden eagle (Aquila chrysaetos), a vagile raptor with a Holarctic distribution,” Conservation Genetics, vol. 17, pp. 1307-1322, 2016, https://doi.org/10.1007/s10592-016-0863-0
J. A. Dewoody et al., “Characterization of the gray whale Eschrichtius robustus genome and a genotyping array based on single-nucleotide polymorphisms in candidate genes,” The Biological Bulletin, vol. 232, no. 3, pp. 186-197, 2017, https://doi.org/10.1086/693483
J. E. Seeb, C. E. Pascal, R. Ramakrishnan, and L. W. Seeb, “SNP genotyping by the 5′-nuclease reaction: advances in high-throughput genotyping with nonmodel organisms,” Single nucleotide polymorphisms: methods and protocols, pp. 277-292, 2009, https://doi.org/10.1007/978-1-60327-411-1_18
A. J. Norman and G. Spong, “Single nucleotide polymorphism‐based dispersal estimates using noninvasive sampling,” Ecology and Evolution, vol. 5, no. 15, pp. 3056-3065, 2015, https://doi.org/10.1002/ece3.1588
V. B. Kraus, F. J. Blanco, M. Englund, M. A. Karsdal, and L. S. Lohmander, “Call for standardized definitions of osteoarthritis and risk stratification for clinical trials and clinical use,” Osteoarthritis and cartilage, vol. 23, no. 8, pp. 1233-1241, 2015, https://doi.org/10.1016/j.joca.2015.03.036
A. M. Rickert, T. A. Borodina, E. J. Kuhn, H. Lehrach, and S. Sperling, “Refinement of single-nucleotide polymorphism genotyping methods on human genomic DNA: amplifluor allele-specific polymerase chain reaction versus ligation detection reaction-TaqMan,” Analytical biochemistry, vol. 330, no. 2, pp. 288-297, 2004, https://doi.org/10.1016/j.ab.2004.03.035
E. J. Busó and M. Iborra, “Sequenom MassARRAY Technology for the Analysis of DNA Methylation: Clinical Applications,” in Epigenetic Biomarkers and Diagnostics: Elsevier, 2016, pp. 137-153, https://doi.org/10.1016/B978-0-12-801899-6.00007-3
F. P. Palstra and D. E. Ruzzante, “Genetic estimates of contemporary effective population size: what can they tell us about the importance of genetic stochasticity for wild population persistence?,” Molecular ecology, vol. 17, no. 15, pp. 3428-3447, 2008, https://doi.org/10.1111/j.1365-294x.2008.03842.x
P. W. Hedrick, “Gene flow and genetic restoration: the Florida panther as a case study,” Conservation Biology, pp. 996-1007, 1995, https://doi.org/10.1046/j.1523-1739.1995.9050988.x-i1
A. A. Hoffmann and C. M. Sgrò, “Climate change and evolutionary adaptation,” Nature, vol. 470, no. 7335, pp. 479-485, 2011, https://doi.org/10.1038/nature09670
P. W. Hedrick and R. Fredrickson, “Genetic rescue guidelines with examples from Mexican wolves and Florida panthers,” Conservation genetics, vol. 11, pp. 615-626, 2010, https://doi.org/10.1007/s10592-009-9999-5
D. J. Coates, M. Byrne, and C. Moritz, “Genetic diversity and conservation units: dealing with the species-population continuum in the age of genomics,” Frontiers in Ecology and Evolution, vol. 6, p. 165, 2018, https://doi.org/10.3389/fevo.2018.00165
D. S. Woodruff, “Populations, species, and conservation genetics,” Encyclopedia of biodiversity, p. 811, 2001, https://doi.org/10.1016%2FB0-12-226865-2%2F00355-2
D. Kraus, A. Enns, A. Hebb, S. Murphy, D. A. R. Drake, and B. Bennett, “Prioritizing nationally endemic species for conservation,” Conservation Science and Practice, vol. 5, no. 1, p. e12845, 2023, https://doi.org/10.1111/csp2.12845
R. M. Zink and L. B. Klicka, “The taxonomic basis of subspecies listed as threatened and endangered under the endangered species act,” Frontiers in Conservation Science, vol. 3, p. 971280, 2022, https://doi.org/10.3389/fcosc.2022.971280
O. Ryder, “Conservation and systematic: The dilemma of subspecies,” Trends Ecol Evol, vol. 1, pp. 9-10, 1986, https://doi.org/10.1016/0169-5347(86)90059-5
R. S. Waples, “Pacific salmon, Oncorhynchus spp., and the definition of” species” under the Endangered Species Act,” Marine Fisheries Review, vol. 53, no. 3, pp. 11-22, 1991.
R. S. Waples, “Evolutionarily significant units and the conservation of biological diversity under the Endangered Species Act,” Evolution and the aquatic ecosystem: defining unique units in population conservation, 1995.
C. Moritz, “Defining ‘evolutionarily significant units’ for conservation,” Trends in ecology & evolution, vol. 9, no. 10, pp. 373-375, 1994, https://doi.org/10.1016/0169-5347(94)90057-4
K. A. Crandall, O. R. Bininda-Emonds, G. M. Mace, and R. K. Wayne, “Considering evolutionary processes in conservation biology,” Trends in ecology & evolution, vol. 15, no. 7, pp. 290-295, 2000, https://doi.org/10.1016/s0169-5347(00)01876-0
J. N. Boulay, M. E. Hellberg, J. Cortés, and I. B. Baums, “Unrecognized coral species diversity masks differences in functional ecology,” Proc. R. Soc. B., vol. 281, no. 1776, p. 20131580, Feb. 2014, https://doi.org/10.1098/rspb.2013.1580
S. Sharma, T. Dutta, J. E. Maldonado, T. C. Wood, H. S. Panwar, and J. Seidensticker, “Spatial genetic analysis reveals high connectivity of tiger ( Panthera tigris ) populations in the Satpura-Maikal landscape of Central India,” Ecol Evol, vol. 3, no. 1, pp. 48–60, Jan. 2013, https://doi.org/10.1002/ece3.432
M. Rossetto et al., “A conservation genomics workflow to guide practical management actions,” Global Ecology and Conservation, vol. 26, p. e01492, Apr. 2021, https://doi.org/10.1016/j.gecco.2021.e01492
E. L. Carroll et al., “Genetic and genomic monitoring with minimally invasive sampling methods,” Evolutionary Applications, vol. 11, no. 7, pp. 1094–1119, Aug. 2018, https://doi.org/10.1111/eva.12600
P. A. Morin and M. Mccarthy, “Highly accurate SNP genotyping from historical and low‐quality samples,” Molecular Ecology Notes, vol. 7, no. 6, pp. 937–946, Nov. 2007, https://doi.org/10.1111/j.1471-8286.2007.01804.x
M. Byrne and M. Hankinson, “Testing the variability of chloroplast sequences for plant phylogeography,” Aust. J. Bot., vol. 60, no. 7, p. 569, 2012, https://doi.org/10.1071/BT12146
Y. Suyama and Y. Matsuki, “MIG-seq: an effective PCR-based method for genome-wide single-nucleotide polymorphism genotyping using the next-generation sequencing platform,” Sci Rep, vol. 5, no. 1, p. 16963, Nov. 2015, https://doi.org/10.1038/srep16963
B. Goossens et al., “Habitat fragmentation and genetic diversity in natural populations of the Bornean elephant: Implications for conservation,” Biological Conservation, vol. 196, pp. 80–92, Apr. 2016, https://doi.org/10.1016/j.biocon.2016.02.008
P. Palsboll, M. Berube, and F. Allendorf, “Identification of management units using population genetic data,” Trends in Ecology & Evolution, vol. 22, no. 1, pp. 11–16, Jan. 2007, https://doi.org/10.1016/j.tree.2006.09.003
C. Moritz, “Conservation Units and Translocations: Strategies for Conserving Evolutionary Processes,” Hereditas, vol. 130, no. 3, pp. 217–228, 1999, https://doi.org/10.1111/j.1601-5223.1999.00217.x
R. Frankham et al., “Implications of different species concepts for conserving biodiversity,” Biological Conservation, vol. 153, pp. 25–31, Sep. 2012, https://doi.org/10.1016/j.biocon.2012.04.034
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Batsukh Tserendulam
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright on any research article in the Proceedings of the Institute of Biology is retained by the author(s).
The authors grant the Proceedings of the Institute of Biology license to publish the article and identify itself as the original publisher.
Articles in the Proceedings of the Institute of Biology are Open Access articles published under a Creative Commons Attribution-NonCommercial 4.0 International License - CC BY NC.
This license permits use, distribution and reproduction in any medium, provided the original work is properly cited.