Endophyte community interactions enhance stress tolerance and tackle climate change
DOI:
https://doi.org/10.5564/pib.v39i1.3145Keywords:
Stress tolerance, climate change, fungal endophytes, plant defense, droughtAbstract
Endophyte microorganisms are vital in protecting plants from pathogens and environmental stressors, such as abiotic and biotic stresses. They produce various useful compounds, including phytohormones, siderophores, and bioactive substances that can protect against insects, microbes, and viruses. Climate change is a significant threat to plant communities, but despite numerous studies investigating the impact of climate change on plants, there has been relatively little research on the role of the plant microbiome in helping plants adapt to changing conditions. This is a significant issue because global agriculture will face significant challenges due to worsening drought conditions caused by climate change. However, research has shown that plant microbiomes, particularly fungal endophytes, can help crops cope with drought stress. To understand the role of these endophytes and their diversity in plant symbiosis is essential to anticipate their function in a changing climate,
Ургамал эндофит бичил биетэнтэй харилцан үйлчлэх нь түүний уур амьсгалын өөрчлөлтөд дасан зохицох болон стресс тэсвэрлэх чадварт нөлөөлөх нь
Хураангуй. Эндофит бичил биетнүүд нь өвчин үүсгэгчдээс болон хүрээлэн буй орчны абиотик, биотик стрессээс ургамлыг хамгаалдаг чухал ач холбогдолтой организмууд юм. Эдгээр бичил биетнүүд нь шавж, бактери болон вирусүүдийн эсрэг хамгаалах фитогормонууд, төмөр, фосфат болон биологийн идэвхт олон төрлийн бодисуудыг нийлэгжүүлдэг. Уур амьсгалын өөрчлөлт нь ургамлын бүлгэмдэлд томоохон аюулыг учруулж байгаа бөгөөд ургамалд үзүүлэх нөлөөллийг судалсан олон судалгаа байгаа хэдий ч ургамлын орчны өөрчлөлтөд дасан зохицоход ургамал доторх бичил биетний гүйцэтгэх үүргийн талаар харьцангуй бага судалгаа хийгдсэн байна. Уур амьсгалын өөрчлөлтөөс үүдэлтэй ган гачгийн нөхцөл байдал улам хүндэрч, дэлхийн хөдөө аж ахуй салбарууд томоохон сорилтуудтай нүүр тулгарах тул энэ нь их чухал асуудал болж байгаа юм. Гэсэн хэдий ч судлаачид ургамал дахь бичил биетнүүд ялангуяа эндофит мөөгөнцрүүд нь үр тарианд гангийн стрессийг даван туулахад тусалдаг болохыг олж мэдсэн. Тиймээс эдгээр эндофит мөөгөнцрүүдийн үүрэг, олон янз байдлыг ойлгож уур амьсгалын өөрчлөлтөд бэлэн байх нь нэн чухал юм.
Түлхүүр үгс: Стресс тэсвэрлэх, уур амьсгалын өөрчлөлт, эндофит мөөгөнцөр, ургамал хамгаалах, ган гачиг
Downloads
149
References
Abraham, A., Philip, S., Kuruvilla Jacob, C., & Jayachandran, K. (2013). Novel bacterial endophytes from Hevea brasiliensis as biocontrol agent against Phytophthora leaf fall disease. BioControl, 58(5), 675–684. https://doi.org/10.1007/s10526-013-9516-0.
Ahlawat, Om Parkash, Dhinu Yadav, Prem Lal Kashyap, Anil Khippal, and Gyanendra Singh. 2022. “Wheat Endophytes and Their Potential Role in Managing Abiotic Stress under Changing Climate.” Journal of Applied Microbiology 132 (4): 2501–20. https://doi.org/10.1111/jam.15375.
Ali, A. H., Abdelrahman, M., Radwan, U., El-Zayat, S., & El-Sayed, M. A. (2018). Effect of Thermomyces fungal endophyte isolated from extreme hot desert-adapted plant on heat stress tolerance of cucumber. Applied Soil Ecology, 124, 155–162. https://doi.org/10.1016/j.apsoil.2017.11.004.
Ali, Shaik. Z., Sandhya, V., Grover, M., Linga, V. R., & Bandi, V. (2011). Effect of inoculation with a thermotolerant plant growth promoting Pseudomonas putida strain AKMP7 on growth of wheat (Triticum spp.) under heat stress. Journal of Plant Interactions, 6(4), 239–246. https://doi.org/10.1080/17429145.2010.545147.
Álvarez-Pérez, J. M., González-García, S., Cobos, R., Olego, M. Á., Ibañez, A., Díez-Galán, A., Garzón-Jimeno, E., & Coque, J. J. R. (2017). Use of endophytic and rhizosphere actinobacteria from grapevine plants to reduce nursery fungal graft infections that lead to young grapevine decline. Applied and Environmental Microbiology, 83(24). https://doi.org/10.1128/AEM.01564-17.
Anisha, C., Jishma, P., Bilzamol, V. S., & Radhakrishnan, E. K. (2018). Effect of ginger endophyte Rhizopycnis vagum on rhizome bud formation and protection from phytopathogens. Biocatalysis and Agricultural Biotechnology, 14, 116–119. https://doi.org/10.1016/j.bcab.2018.02.015.
Bae, H., Sicher, R. C., Kim, M. S., Kim, S.-H., Strem, M. D., Melnick, R. L., & Bailey, B. A. (2009). The beneficial endophyte Trichoderma hamatum isolate DIS 219b promotes growth and delays the onset of the drought response in Theobroma cacao. Journal of Experimental Botany, 60(11), 3279–3295. https://doi.org/10.1093/jxb/erp165.
Bian, J. Y., Fang, Y. L., Song, Q., Sun, M. L., Yang, J.-Y., Ju, Y. W., Li, D. W., & Huang, L. (2021). The fungal endophyte Epicoccum dendrobii as a potential biocontrol agent against Colletotrichum gloeosporioides. Phytopathology®, 111(2), 293–303. https://doi.org/10.1094/PHYTO-05-20-0170-R.
Carro-Huerga, G., Compant, S., Gorfer, M., Cardoza, R. E., Schmoll, M., Gutiérrez, S., & Casquero, P. A. (2020). Colonization of Vitis vinifera L. by the endophyte Trichoderma sp. strain T154: Biocontrol activity against Phaeoacremonium minimum. Frontiers in Plant Science, 11. https://doi.org/10.3389/fpls.2020.01170.
Chaudhary, P., Agri, U., Chaudhary, A., Kumar, A., & Kumar, G. (2022). Endophytes and their potential in biotic stress management and crop production. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.933017.
De Silva, N. I., Brooks, S., Lumyong, S., & Hyde, K. D. (2019). Use of endophytes as biocontrol agents. Fungal Biology Reviews, 33(2), 133–148. https://doi.org/10.1016/j.fbr.2018.10.001.
Díaz Herrera, S., Grossi, C., Zawoznik, M., & Groppa, M. D. (2016). Wheat seeds harbour bacterial endophytes with potential as plant growth promoters and biocontrol agents of Fusarium graminearum. Microbiological Research, 186–187, 37–43. https://doi.org/10.1016/j.micres.2016.03.002.
Dingle, J., & Mcgee, P. A. (2003). Some endophytic fungi reduce the density of pustules of Puccinia recondita f. sp. tritici in wheat. Mycological Research, 107(3), 310–316. https://doi.org/10.1017/S0953756203007512.
Eljounaidi, K., Lee, S. K., & Bae, H. (2016). Bacterial endophytes as potential biocontrol agents of vascular wilt diseases – Review and future prospects. Biological Control, 103, 62–68. https://doi.org/10.1016/j.biocontrol.2016.07.013.
Etesami, H., Jeong, B. R., & Glick, B. R. (2023). Biocontrol of plant diseases by Bacillus spp. Physiological and Molecular Plant Pathology, 126, 102048. https://doi.org/10.1016/j.pmpp.2023.102048.
García-Latorre, Carlos, Sara Rodrigo, and Oscar Santamaria. 2021. “Effect of Fungal Endophytes on Plant Growth and Nutrient Uptake in Trifolium Subterraneum and Poa Pratensis as Affected by Plant Host Specificity.” Mycological Progress 20 (9): 1217–31. https://doi.org/10.1007/s11557-021-01732-6.
Giauque, Hannah, and Christine V. Hawkes. 2013. “Climate Affects Symbiotic Fungal Endophyte Diversity and Performance.” American Journal of Botany 100 (7): 1435–44.
Gupta, S., Choudhary, M., Singh, B., Singh, R., Dhar, M. K., & Kaul, S. (2022). Diversity and biological activity of fungal endophytes of Zingiber officinale Rosc. with emphasis on Aspergillus terreus as a biocontrol agent of its leaf spot. Biocatalysis and Agricultural Biotechnology, 39, 102234. https://doi.org/10.1016/j.bcab.2021.102234.
Hazarika, D. J., Goswami, G., Gautom, T., Parveen, A., Das, P., Barooah, M., & Boro, R. C. (2019). Lipopeptide mediated biocontrol activity of endophytic Bacillus subtilis against fungal phytopathogens. BMC Microbiology, 19(1), 71. https://doi.org/10.1186/s12866-019-1440-8.
Hone, Holly, Ross Mann, Guodong Yang, Jatinder Kaur, Ian Tannenbaum, Tongda Li, German Spangenberg, and Timothy Sawbridge. 2021. “Profiling, Isolation and Characterisation of Beneficial Microbes from the Seed Microbiomes of Drought Tolerant Wheat.” Scientific Reports 11 (1): 11916. https://doi.org/10.1038/s41598-021-91351-8.
Jha, Y., Subramanian, R. B., & Patel, S. (2011). Combination of endophytic and rhizospheric plant growth promoting rhizobacteria in Oryza sativa shows higher accumulation of osmoprotectant against saline stress. Acta Physiologiae Plantarum, 33(3), 797–802. https://doi.org/10.1007/s11738-010-0604-9.
Kamran, M., Imran, Q. M., Ahmed, M. B., Falak, N., Khatoon, A., & Yun, B.-W. (2022). Endophyte-mediated stress tolerance in plants: A sustainable strategy to enhance resilience and assist crop improvement. Cells, 11(20), 3292. https://doi.org/10.3390/cells11203292.
Kandel, S., Joubert, P., & Doty, S. (2017). Bacterial endophyte colonization and distribution within plants. Microorganisms, 5(4), 77. https://doi.org/10.3390/microorganisms5040077.
Kashyap, N., Singh, S. K., Yadav, N., Singh, V. K., Kumari, M., Kumar, D., Shukla, L., Kaushalendra, Bhardwaj, N., & Kumar, A. (2023). Biocontrol screening of endophytes: applications and limitations. Plants, 12(13), 2480. https://doi.org/10.3390/plants12132480.
Khan, A. L., Hamayun, M., Radhakrishnan, R., Waqas, M., Kang, S. M., Kim, Y. H., Shin, J. H., Choo, Y. S., Kim, J. G., & Lee, I. J. (2012). Mutualistic association of Paecilomyces formosus LHL10 offers thermotolerance to Cucumis sativus. Antonie van Leeuwenhoek, 101(2), 267–279. https://doi.org/10.1007/s10482-011-9630-x.
Khare, E., Mishra, J., Arora, N.K., 2018. Multifaceted interactions between endophytes and plant5 development and prospects. Front. Microbiol. 9, 2732.
Komal, Rani, Tyagi Mitali, Singh Akanksha, Shanmugam Vairamani, Shanmugam Annaian, Pillai Manoj, and Srinivasan Alagiri. 2019. “Identification of Annotated Metabolites in the Extract of Centella asiatica” Journal of Medicinal Plants Research 13 (5): 112–28. https://doi.org/10.5897/JMPR2018.6711.
Kumar, M., Sharma, S., Gupta, S., & Kumar, V. (2018). Mitigation of abiotic stresses in Lycopersicon esculentum by endophytic bacteria. Environmental Sustainability, 1(1), 71–80. https://doi.org/10.1007/s42398-018-0004-4.
Xiangsong Li Pengfei He, Pengbo He, Yongmei Li, Yixin Wu, Chan Mu, Shahzad Munir, & Yueqiu He. (2023). Native endophytes from maize as potential biocontrol agents against bacterial top rot caused by cross-kingdom pathogen Klebsiella pneumoniae. Biological Control, 178, 105131. https://doi.org/10.1016/j.biocontrol.2022.105131
Limdolthamand, S., Songkumarn, P., Suwannarat, S., Jantasorn, A., & Dethoup, T. (2023). Biocontrol efficacy of endophytic Trichoderma spp. in fresh and dry powder formulations in controlling northern corn leaf blight in sweet corn. Biological Control, 181, 105217. https://doi.org/10.1016/j.biocontrol.2023.105217
Nautiyal, C. S., Srivastava, S., Chauhan, P. S., Seem, K., Mishra, A., & Sopory, S. K. (2013). Plant growth-promoting bacteria Bacillus amyloliquefaciens NBRISN13 modulates gene expression profile of leaf and rhizosphere community in rice during salt stress. Plant Physiology and Biochemistry, 66, 1–9. https://doi.org/10.1016/j.plaphy.2013.01.020
Newman, M.-A., Sundelin, T., Nielsen, J. T., & Erbs, G. (2013). MAMP (microbe-associated molecular pattern) triggered immunity in plants. Frontiers in Plant Science, 4. https://doi.org/10.3389/fpls.2013.00139
Ohm RA, Feau N, Henrissat B, Schoch CL, Horwitz BA, et al. (2013) Correction: Diverse Lifestyles and Strategies of Plant Pathogenesis Encoded in the Genomes of Eighteen Dothideomycetes Fungi. PLOS Pathogens 9(3): 10.1371/annotation/fcca88ac-d684-46e0-a483-62af67e777bd. https://doi.org/10.1371/annotation/fcca88ac-d684-46e0-a483-62af67e777bd
Omomowo and Babalola. 2019. “Bacterial and Fungal Endophytes: Tiny Giants with Immense Beneficial Potential for Plant Growth and Sustainable Agricultural Productivity.” Microorganisms 7 (11): 481.https://doi.org/10.3390/microorganisms7110481
Pathak, P., Rai, V. K., Can, H., Singh, S. K., Kumar, D., Bhardwaj, N., Roychowdhury, R., de Azevedo, L. C. B., Kaushalendra, Verma, H., & Kumar, A. (2022). Plant-Endophyte Interaction during Biotic Stress Management. Plants, 11(17), 2203. https://doi.org/10.3390/plants11172203
Rodriguez, R. & Duran, P., 2020. Natural holobiome engineering by using native extreme microbiome to counteract the climate change effects. Front. Bioeng. Biotechnol. 8. 568. https://doi.org/10.3389/fbioe.2020.00568
Rout, Marnie E., and Thomas H. Chrzanowski. 2009. “The Invasive Sorghum halepense Harbors Endophytic N2-Fixing Bacteria and Alters Soil Biogeochemistry” Plant and Soil 315 (1): 163–72. https://doi.org/10.1007/s11104-008-9740-z.
Rout, Marnie E., Thomas H. Chrzanowski, Tara K. Westlie, Thomas H. DeLuca, Ragan M. Callaway, and William E. Holben. 2013. “Bacterial Endophytes Enhance Competition by Invasive Plants.” American Journal of Botany 100 (9): 1726–37. https://doi.org/10.3732/ajb.1200577.
Saikkonen, K, J Mikola, and M Helander. 2015. “Endophytic Phyllosphere Fungi and Nutrient Cycling in Terrestrial Ecosystems.” CURRENT SCIENCE 109 (1).
Salvi, P., Mahawar, H., Agarrwal, R., Kajal, Gautam, V., & Deshmukh, R. (2022). Advancement in the molecular perspective of plant-endophytic interaction to mitigate drought stress in plants. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.981355
Sangamesh, M. B., Jambagi, S., Vasanthakumari, M. M., Shetty, N. J., Kolte, H., Ravikanth, G., Nataraja, K. N., & Uma Shaanker, R. (2018). Thermotolerance of fungal endophytes isolated from plants adapted to the Thar Desert, India. Symbiosis, 75(2), 135–147. https://doi.org/10.1007/s13199-017-0527-y
Santiago, I.F., Rosa, C.A., Rosa, L.H., 2017. Endophytic symbiont yeasts associated with the Antarctic angiosperms Deschampsia antarctica and Colobanthus quitensis. Polar Biol. 40, 177e183. https://doi.org/10.1007/s00300-016-1940-z
Segaran, G., & Sathiavelu, M. (2019). Fungal endophytes: A potent biocontrol agent and a bioactive metabolites reservoir. In Biocatalysis and Agricultural Biotechnology (Vol. 21). Elsevier Ltd. https://doi.org/10.1016/j.bcab.2019.101284
Shaffique, S., Khan, M. A., Wani, S. H., Pande, A., Imran, M., Kang, S. M., Rahim, W., Khan, S. A., Bhatta, D., Kwon, E. H., & Lee, I. J. (2022). A review on the role of endophytes and plant growth promoting rhizobacteria in mitigating heat stress in plants. Microorganisms, 10(7), 1286. https://doi.org/10.3390/microorganisms10071286
Sharma, I., Raina, A., Choudhary, M., Apra, Kaul, S., & Dhar, M. K. (2023). Fungal endophyte bioinoculants as a green alternative towards sustainable agriculture. Heliyon, 9(9), e19487. https://doi.org/10.1016/j.heliyon.2023.e19487
Shekhawat, K., Almeida-Trapp, M., García-Ramírez, G. X., & Hirt, H. (2022). Beat the heat: plant- and microbe-mediated strategies for crop thermotolerance. Trends in Plant Science, 27(8), 802–813. https://doi.org/10.1016/j.tplants.2022.02.008
Shekhawat, K., Saad, M. M., Sheikh, A., Mariappan, K., Al‐Mahmoudi, H., Abdulhakim, F., Eida, A. A., Jalal, R., Masmoudi, K., & Hirt, H. (2021). Root endophyte induced plant thermotolerance by constitutive chromatin modification at heat stress memory gene loci. EMBO Reports, 22(3). https://doi.org/10.15252/embr.202051049
Sodhi, G. K., & Saxena, S. (2023). Plant growth-promoting endophyte Nigrospora oryzae mitigates abiotic stress in rice (Oryza sativa L.). FEMS Microbiology Ecology, 99(9). https://doi.org/10.1093/femsec/fiad094
Suryanarayanan, T. S., and R. Uma Shaanker. 2021. “Can Fungal Endophytes Fast-Track Plant Adaptations to Climate Change?” Fungal Ecology 50 (April): 101039. https://doi.org/10.1016/j.funeco.2021.101039.
Tyagi, J., Chaudhary, P., Mishra, A., Khatwani, M., Dey, S., & Varma, A. (2022). Role of endophytes in abiotic stress tolerance: with special emphasis on Serendipita indica. International Journal of Environmental Research, 16(4), 62. https://doi.org/10.1007/s41742-022-00439-0
U’Ren, J.M., Lutzoni, F., Miadlikowska, J., Arnold, A.E., 2010. Community analysis reveals close affinities between endophytic and endolichenic fungi in mosses and lichens. Microb. Ecol. 60, 340e353.
Verma, A., Shameem, N., Jatav, H. S., Sathyanarayana, E., Parray, J. A., Poczai, P., & Sayyed, R. Z. (2022). Fungal endophytes to combat biotic and abiotic stresses for climate-smart and sustainable agriculture. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.953836
Wei, J., Zhao, J., Suo, M., Wu, H., Zhao, M., & Yang, H. (2023). Biocontrol mechanisms of Bacillus velezensis against Fusarium oxysporum from Panax ginseng. Biological Control, 182, 105222. https://doi.org/10.1016/j.biocontrol.2023.105222
Xu, W., Ren, H., Ou, T., Lei, T., Wei, J., Huang, C., Li, T., Strobel, G., Zhou, Z., & Xie, J. (2019). Genomic and functional characterization of the endophytic Bacillus subtilis 7PJ-16 strain, a potential biocontrol agent of mulberry fruit sclerotiniose. Microbial Ecology, 77(3), 651–663. https://doi.org/10.1007/s00248-018-1247-4
Yamaji, K., Watanabe, Y., Masuya, H., Shigeto, A., Yui, H., Haruma, T. 2016. Root fungal endophytes enhance heavy-metal stress tolerance of Clethra barbinervis growing naturally at mining sites via growth enhancement, promotion of nutrient uptake and decrease of heavy-metal concentration. PloS One 11, e0169089.
Yu, K., Pieterse, C. M. J., Bakker, P. A. H. M., & Berendsen, R. L. (2019). Beneficial microbes going underground of root immunity. Plant, Cell & Environment, 42(10), 2860–2870. https://doi.org/10.1111/pce.13632.
Zhang, H., Kim, M.-S., Sun, Y., Dowd, S. E., Shi, H., & Paré, P. W. (2008). Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. Molecular Plant-Microbe Interactions®, 21(6), 737–744. https://doi.org/10.1094/MPMI-21-6-0737.
Zhang, X., Zhou, Y., Li, Y., Fu, X., & Wang, Q. (2017). Screening and characterization of endophytic Bacillus for biocontrol of grapevine downy mildew. Crop Protection, 96, 173–179. https://doi.org/10.1016/j.cropro.2017.02.018.
Zhou, W. N., White, J. F., Soares, M. A., Torres, M. S., Zhou, Z. P., & Li, H.-Y. (2015). Diversity of fungi associated with plants growing in geothermal ecosystems and evaluation of their capacities to enhance thermotolerance of host plants. Journal of Plant Interactions, 10(1), 305–314. https://doi.org/10.1080/17429145.2015.1101495
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Turbat Adiyadolgor
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright on any research article in the Proceedings of the Institute of Biology is retained by the author(s).
The authors grant the Proceedings of the Institute of Biology license to publish the article and identify itself as the original publisher.
Articles in the Proceedings of the Institute of Biology are Open Access articles published under a Creative Commons Attribution-NonCommercial 4.0 International License - CC BY NC.
This license permits use, distribution and reproduction in any medium, provided the original work is properly cited.