Microbial exopolymers for soil restoration and remediation: current progress and future perspectives

Authors

DOI:

https://doi.org/10.5564/pib.v39i1.3144

Keywords:

soil aggregation, soil microbial EPS, soil bioremediation, soil health

Abstract

Soil degradation and pollution are pervasive global challenges caused by climate change and anthropogenic activities. To address these issues, seeking environmentally friendly and sustainable solutions to restore degraded soils and remediate polluted ones is imperative. One promising avenue lies in the utilization of microbial exopolymers, which can play a pivotal role in rejuvenating soil health by enhancing its physical, chemical, and biological properties. Microbial exopolymers, through their various functional groups, facilitate interactions that bind soil particles together, thereby promoting soil aggregation and immobilizing soil pollutants. Thus, the application of exopolymers holds the potential to enable soils to continue providing its essential ecosystem services. Despite significant progress in evaluating the impact of microbial exopolymers on soil properties, there remains a pressing need to overcome existing challenges that hinder the large-scale use of microbial exopolymers for soil restoration and remediation. The significant challenges include (i) inadequate understanding on the effectiveness and safety of exogenous microorganisms and their interactions with native soil biotic and abiotic factors, (ii) the lack of feasible methods for characterizing the constituents of exopolymers produced by soil microbial community, (iii) insufficient efforts in exploring the community diversity of soil microorganisms capable of producing exopolymers in various soils, and (iv) inadequate effort on aligning the molecular characteristics of exopolymers with the specific application purposes. To harness the full potential of microbial exopolymers, interdisciplinary approaches are paramount in achieving improved effectiveness of soil restoration and bioremediation endeavors, which are of utmost importance in the ever-changing environment.

Бичил биетний экзополимерийг хөрсний нөхөн сэргээлтэд ашиглах нь: өнөөгийн төлөв байдал, ирээдүйн чиг хандлага

Хураангуй. Уур амьсгалын өөрчлөлт болон хүний үйл ажиллагааны нөлөөгөөр явагдаж буй хөрсний доройтол, бохирдол нь дэлхий нийтийн тулгамдсан асуудлууд бөгөөд эдгээрийг хүрээлэн буй орчинд ээлтэй, тогтвортой технологийн тусламжтай шийдвэрлэх шаардлагатай. Бичил биетний экзополимерийг ашиглан хөрсний физик, хими, биологийн шинж чанарыг нь сайжруулах замаар хөрсний эрүүл төлөв байдлыг нэмэгдүүлэх технологийг боловсруулах боломжтой. Бичил биетний экзополимер нь төрөл бүрийн функциональ бүлгийнхээ тусламжтай хөрсний жижиг хэсгүүдийг холбож барьцалдуулан хөрсний агрегацийг нэмэгдүүлж, хөрс бохирдуулагч нэгдлүүдийг идэвхгүй (тогтвортой) болгодог. Ингэснээр хөрсөөр хангагддаг экосистемийн үүргүүд хэвийн үргэлжлэх боломж бүрдэх юм. Бичил биетний экзополимер хөрсний шинж чанарыг сайжруулдаг болохыг баталсан олон судалгаа хийгдсэн боловч тэдгээрийг хөрсний нөхөн сэргээлтэд өргөн хүрээгээр ашиглахын тулд анхаарах шаардлагатай хэд хэдэн асуудлууд байна. Үүнд: 1. Гаднаас нэмж буй бичил биетэн байгалийн хөрсөнд үр дүнтэй ажиллах эсэх болон тухайн хөрсний хэвийн микробиотад яаж нөлөөлөх талаарх ойлголт хангалтгүй, 2. Хөрсний бичил биетний бүлгэмдлийн ялгаруулж буй эзкополимерийн бүрэлдэхүүн хэсгүүдийг таньж тодорхойлоход хүндрэлтэй, 3. Шинж чанар, эрүүл төлөв байдлын хувьд ялгаатай хөрсөнд эзкополимер нийлэгжүүлэгч бичил биетний олон янз байдлыг харьцуулсан судалгаа маш бага, 4. Экзополимерийн химийн бүтэц, шинж чанарыг хэрэглэж буй зорилготойгоо уялдуулахад бага анхаарч байна. Бичил биетний экзополимерийг бүрэн ашиглаж хөрсний нөхөн сэргээлтийн үр дүнг нэмэгдүүлэхэд салбар дундын судалгаа чухал байна.
Түлхүүр үгс: хөрсний агрегаци, хөрсний бичил биетний экзополимер, хөрсний биоремедиаци, хөрсний эрүүл төлөв байдал

Downloads

Download data is not yet available.
Abstract
232
PDF
144

References

IPCC, “Climate Change and Land: An IPCC Special Report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems” [P.R. Shukla, et al., (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, 2019. 896 pp. https://doi.org/10.1017/9781009157988.

K. Timmis et al., “The urgent need for microbiology literacy in society,” Environmental Microbiology, vol. 21, no. 5. Blackwell Publishing Ltd, pp. 1513–1528, May 01, 2019. https://doi.org/10.1111/1462-2920.14611.

A. Lehmann, W. Zheng, and M. C. Rillig, “Soil biota contributions to soil aggregation,” Nat Ecol Evol, vol. 1, no. 12, pp. 1828–1835, Dec. 2017, https://doi.org/10.1038/s41559-017-0344-y.

S. Rebello, V. K. Nathan, R. Sindhu, P. Binod, M. K. Awasthi, and A. Pandey, “Bioengineered microbes for soil health restoration: present status and future,” Bioengineered, vol. 12, no. 2. Taylor and Francis Ltd., pp. 12839–12853, 2021. https://doi.org/10.1080/21655979.2021.2004645.

N. Rodríguez Eugenio, M. J. McLaughlin, and D. J. Pennock, “Soil pollution: a hidden reality” 2018, Rome. FAO,142 pp.

J. Pichtel, “Biofilms for remediation of xenobiotic hydrocarbons -a technical review,” in Biofilms in Plant and Soil Health, F. M. Husain and I. Ahmad, Eds., Wiley, 2017, pp. 357–385. https://doi.org/10.1002/9781119256329

S. Das and H. R. Dash, “Microbial bioremediation: a potential tool for rRestoration of contaminated areas,” in Microbial Biodegradation and Bioremediation, Elsevier Inc., 2014, pp. 2–21. https://doi.org/10.1016/B978-0-12-800021-2.00001-7.

J. K. Jansson and K. S. Hofmockel, “Soil microbiomes and climate change,” Nat Rev Microbiol, vol. 18, Nature Publishing Group, pp. 34–46, 2020. https://doi.org/10.1038/s41579.

M. L. Saccá, A. Barra Caracciolo, M. Di Lenola, and P. Grenni, “Ecosystem services provided by soil microorganisms,” in Soil Biological Communities and Ecosystem Resilience, Springer International Publishing, 2017, pp. 9–24. https://doi.org/10.1007/978-3-319-63336-7_2.

O. Y. A. Costa, J. M. Raaijmakers, and E. E. Kuramae, “Microbial extracellular polymeric substances: Ecological function and impact on soil aggregation,” Frontiers in Microbiology, vol. 9, no. JUL. Frontiers Media S.A., Jul. 23, 2018. https://doi.org/10.3389/fmicb.2018.01636.

E. Rabot, M. Wiesmeier, S. Schlüter, and H. J. Vogel, “Soil structure as an indicator of soil functions: A review,” Geoderma, vol. 314. Elsevier B.V., pp. 122–137, Mar. 15, 2018. https://doi.org/10.1016/j.geoderma.2017.11.009.

K. Mehta, A. Shukla, and M. Saraf, “Articulating the exuberant intricacies of bacterial exopolysaccharides to purge environmental pollutants,” Heliyon, vol. 7, no. 11. Elsevier Ltd, Nov. 01, 2021. https://doi.org/10.1016/j.heliyon.2021.e08446.

M. C. S. Barcelos, K. A. C. Vespermann, F. M. Pelissari, and G. Molina, “Current status of biotechnological production and applications of microbial exopolysaccharides,” Critical Reviews in Food Science and Nutrition, vol. 60, no. 9. Taylor and Francis Inc., pp. 1475–1495, May 14, 2020. https://doi.org/10.1080/10408398.2019.1575791.

L. Huang et al., “A Review of the Role of Extracellular Polymeric Substances (EPS) in Wastewater Treatment Systems,” International Journal of Environmental Research and Public Health, vol. 19, no. 19. MDPI, Oct. 01, 2022. https://doi.org/10.3390/ijerph191912191.

F. Freitas, V. D. Alves, and M. A. M. Reis, “Advances in bacterial exopolysaccharides: From production to biotechnological applications,” Trends in Biotechnology, vol. 29, no. 8. pp. 388–398, Aug. 2011. https://doi.org/10.1016/j.tibtech.2011.03.008.

T. T. More, J. S. S. Yadav, S. Yan, R. D. Tyagi, and R. Y. Surampalli, “Extracellular polymeric substances of bacteria and their potential environmental applications,” Journal of Environmental Management, vol. 144. Academic Press, pp. 1–25, Nov. 01, 2014. https://doi.org/10.1016/j.jenvman.2014.05.010.

C. Núñez, L. López-Pliego, C. L. Ahumada-Manuel, and M. Castañeda, “Genetic regulation of alginate production in Azotobacter vinelandii a bacterium of biotechnological interest: a mini-review,” Frontiers in Microbiology, vol. 13. Frontiers Media S.A., Mar. 23, 2022. https://doi.org/10.3389/fmicb.2022.845473.

F. Donot, A. Fontana, J. C. Baccou, and S. Schorr-Galindo, “Microbial exopolysaccharides: Main examples of synthesis, excretion, genetics and extraction,” Carbohydrate Polymers, vol. 87, no. 2. Elsevier Ltd, pp. 951–962, Jan. 15, 2012. https://doi.org/10.1016/j.carbpol.2011.08.083.

S. Acosta‐jurado, F. Fuentes‐romero, J. E. Ruiz‐sainz, M. Janczarek, and J. M. Vinardell, “Rhizobial exopolysaccharides: Genetic regulation of their synthesis and relevance in symbiosis with legumes,” Int J Mol Sci, vol. 22, no. 12, Jun. 2021, https://doi.org/10.3390/ijms22126233.

S. B. Pereira et al., “Strategies to obtain designer polymers based on cyanobacterial extracellular polymeric substances (EPS),” International Journal of Molecular Sciences, vol. 20, no. 22. MDPI AG, Nov. 02, 2019. https://doi.org/10.3390/ijms20225693.

Iqbal Ahmad, Mohammad Shavez Khan, Mohd Musheer Altaf, Faizan Abul Qais, Firoz Ahmad Ansari, and Kendra P. Rumbaugh, “Biofilms: An Overview of Their Significance in Plant and Soil Health,” in Biofilms in Plant and Soil Health, F. M. Husain and I. Ahmad, Eds., Wiley, 2017. pp. 1–25, https://doi.org/10.1002/9781119256329.

J. Wingender, Thomas, R. Neu, and Hans-Curt Flemming, “What are Bacterial Extracellular Polymeric Substances,” in Microbial Extracellular Polymeric Substances, J. Wingender et al., (eds.), Springer-Verlag Berlin Heidelberg, 1999. pp. 1–19

P. Di Martino, “Extracellular polymeric substances, a key element in understanding biofilm phenotype,” AIMS Microbiol, vol. 4, no. 2, pp. 274–288, 2018, https://doi.org/10.3934/microbiol.2018.2.274.

Y. Wu et al., “Soil biofilm formation enhances microbial community diversity and metabolic activity,” Environ Int, vol. 132, Nov. 2019, https://doi.org/10.1016/j.envint.2019.105116.

Y. Jiao et al., “Characterization of extracellular polymeric substances from acidophilic microbial biofilms,” Appl Environ Microbiol, vol. 76, no. 9, pp. 2916–2922, May 2010, https://doi.org/10.1128/AEM.02289-09.

A. Pandit, A. Adholeya, D. Cahill, L. Brau, and M. Kochar, “Microbial biofilms in nature: unlocking their potential for agricultural applications,” Journal of Applied Microbiology, vol. 129, no. 2. John Wiley and Sons Inc, pp. 199–211, Aug. 01, 2020. https://doi.org/10.1111/jam.14609.

H. Yildiz and N. Karatas, “Microbial exopolysaccharides: Resources and bioactive properties,” Process Biochemistry, vol. 72. Elsevier Ltd, pp. 41–46, Sep. 01, 2018. https://doi.org/10.1016/j.procbio.2018.06.009.

M. Irfan, M. Zaheer, S. Shahid Imran Bukhari, M. Hassan Abbasi, and S. Javed, “Bacterial Exopolysaccharides: sources, production and applications.” Biologia (Pakistan), ISSN 2313-206X (On-Line), vol. 65, 2019.

A. Mishra and B. Jha, “Microbial exopolysaccharides,” in The Prokaryotes: Applied Bacteriology and Biotechnology, vol. 9783642313318, Springer-Verlag Berlin Heidelberg, 2013, pp. 179–192. https://doi.org/10.1007/978-3-642-31331-8_25.

S. Rana and L. S. B. Upadhyay, “Microbial exopolysaccharides: Synthesis pathways, types and their commercial applications,” Int J Biol Macromol, vol. 157, pp. 577–583, Aug. 2020, https://doi.org/10.1016/j.ijbiomac.2020.04.084.

K. V. Madhuri and K. Vidya Prabhakar, “Microbial exopolysaccharides: Biosynthesis and potential applications,” Oriental Journal of Chemistry, vol. 30, no. 3, pp. 1401–1410, 2014, https://doi.org/10.13005/ojc/300362.

U. Halder, K. Mazumder, K. J. Kumar, and R. Bandopadhyay, “Structural insight into a glucomannan-type extracellular polysaccharide produced by a marine Bacillus altitudinis SORB11 from Southern Ocean,” Sci Rep, vol. 12, no. 1, Dec. 2022, https://doi.org/10.1038/s41598-022-20822-3.

M. Tartaglia, F. Bastida, R. Sciarrillo, and C. Guarino, “Soil metaproteomics for the study of the relationships between microorganisms and plants: A review of extraction protocols and ecological insights,” Int J Mol Sci, vol. 21, no. 22, pp. 1–20, Nov. 2020, https://doi.org/10.3390/ijms21228455.

Y. Li, J. Xu, J. Hu, T. Zhang, X. Wu, and Y. Yang, “Arbuscular mycorrhizal fungi and glomalin play a crucial role in soil aggregate stability in Pb-contaminated soil,” Int J Environ Res Public Health, vol. 19, no. 9, May 2022, https://doi.org/10.3390/ijerph19095029.

Q. Wang et al., “Spatial variations in concentration, compositions of glomalin related soil protein in poplar plantations in northeastern China, and possible relations with soil physicochemical properties,” The Scientific World Journal, vol. 2014, 2014, https://doi.org/10.1155/2014/160403.

X. N. Guo, Y. Hao, X. L. Wu, X. Chen, and C. Y. Liu, “Exogenous easily extractable glomalin-related soil protein stimulates plant growth by regulating tonoplast intrinsic protein expression in lemon,” Plants, vol. 12, no. 16, Aug. 2023, https://doi.org/10.3390/plants12162955.

W. Wang, Z. Zhong, Q. Wang, H. Wang, Y. Fu, and X. He, “Glomalin contributed more to carbon, nutrients in deeper soils, and differently associated with climates and soil properties in vertical profiles,” Sci Rep, vol. 7, no. 1, Dec. 2017, https://doi.org/10.1038/s41598-017-12731-7.

X. Zhou et al., “Characterization of different molecular size fractions of glomalin-related soil protein from forest soil and their interaction with phenanthrene,” Front Microbiol, vol. 12, Feb. 2022, https://doi.org/10.3389/fmicb.2021.822831.

M. A. Redmile-Gordon, P. C. Brookes, R. P. Evershed, K. W. T. Goulding, and P. R. Hirsch, “Measuring the soil-microbial interface: Extraction of extracellular polymeric substances (EPS) from soil biofilms,” Soil Biol Biochem, vol. 72, pp. 163–171, May 2014, https://doi.org/10.1016/j.soilbio.2014.01.025.

A. W. Gillespie et al., “Glomalin-related soil protein contains non-mycorrhizal-related heat-stable proteins, lipids and humic materials,” Soil Biol Biochem, vol. 43, no. 4, pp. 766–777, Apr. 2011, https://doi.org/10.1016/j.soilbio.2010.12.010.

M. Redmile-Gordon and L. Chen, “Zinc toxicity stimulates microbial production of extracellular polymers in a copiotrophic acid soil,” Int Biodeterior Biodegradation, vol. 119, pp. 413–418, Apr. 2017, https://doi.org/10.1016/j.ibiod.2016.10.004.

M. Redmile-Gordon, A. S. Gregory, R. P. White, and C. W. Watts, “Soil organic carbon, extracellular polymeric substances (EPS), and soil structural stability as affected by previous and current land-use,” Geoderma, vol. 363, Apr. 2020, https://doi.org/10.1016/j.geoderma.2019.114143.

M. A. Redmile-Gordon, R. P. Evershed, P. R. Hirsch, R. P. White, and K. W. T. Goulding, “Soil organic matter and the extracellular microbial matrix show contrasting responses to C and N availability,” Soil Biol Biochem, vol. 88, pp. 257–267, Sep. 2015, https://doi.org/10.1016/j.soilbio.2015.05.025.

S. Wang et al., “Extraction of extracellular polymeric substances (EPS) from red soils (Ultisols),” Soil Biol Biochem, vol. 135, pp. 283–285, Aug. 2019, https://doi.org/10.1016/j.soilbio.2019.05.014.

I. Ahmad, M. S. Khan, M. M. Altaf, F. A. Qais, F. A. Ansari, and K. Rumbaugh, “Biofilms: An Overview of Their Significance in Plant and Soil Health,” in Biofilms in Plant and Soil Health, I. Ahmad and F. M. Husain, Eds., 2017, pp. 1–25.

O. Y. A. Costa, J. M. Raaijmakers, and E. E. Kuramae, “Microbial extracellular polymeric substances: Ecological function and impact on soil aggregation,” Frontiers in Microbiology, vol. 9, Frontiers Media S.A., Jul. 23, 2018. https://doi.org/10.3389/fmicb.2018.01636.

M. Zhang, P. Cai, Y. Wu, C. Gao, J. Liu, and Q. Huang, “Bacterial Extracellular Polymeric Substances: From the Perspective of Soil Ecological Functions,” Acta Pedologica Sinica, vol. 59, no. 2, pp. 308–323, 2022, https://doi.org/10.11766/trxb202107310271.

F. Salimi and P. Farrokh, “Recent advances in the biological activities of microbial exopolysaccharides,” World Journal of Microbiology and Biotechnology, vol. 39, no. 8. Springer Science and Business Media B.V., Aug. 01, 2023. https://doi.org/10.1007/s11274-023-03660-x.

D. M. Mager and A. D. Thomas, “Extracellular polysaccharides from cyanobacterial soil crusts: A review of their role in dryland soil processes,” J Arid Environ, vol. 75, no. 2, pp. 91–97, Feb. 2011, https://doi.org/10.1016/J.JARIDENV.2010.10.001.

M. D. V. B. Figueiredo, A. Bonifacio, A. C. Rodrigues, F. F. de Araujo, and N. P. Stamford, “Beneficial microorganisms: Current challenge to increase crop performance,” in Bioformulations: For Sustainable Agriculture, Springer International Publishing, 2016, pp. 53–70. https://doi.org/10.1007/978-81-322-2779-3_3.

M. Albareda, D. N. Rodríguez-Navarro, M. Camacho, and F. J. Temprano, “Alternatives to peat as a carrier for rhizobia inoculants: Solid and liquid formulations,” Soil Biol Biochem, vol. 40, no. 11, pp. 2771–2779, Nov. 2008, https://doi.org/10.1016/j.soilbio.2008.07.021.

K. Mehta, A. Shukla, and M. Saraf, “Articulating the exuberant intricacies of bacterial exopolysaccharides to purge environmental pollutants,” Heliyon, vol. 7, no. 11. Elsevier Ltd, Nov. 01, 2021. https://doi.org/10.1016/j.heliyon.2021.e08446.

I. Saha, S. Datta, and D. Biswas, “Exploring the role of bacterial extracellular polymeric substances for sustainable development in agriculture,” Current Microbiology, vol. 77, no. 11. Springer, pp. 3224–3239, Nov. 01, 2020. https://doi.org/10.1007/s00284-020-02169-y.

T. Siddharth, P. Sridhar, V. Vinila, and R. D. Tyagi, “Environmental applications of microbial extracellular polymeric substance (EPS): A review,” Journal of Environmental Management, vol. 287. Academic Press, Jun. 01, 2021. https://doi.org/10.1016/j.jenvman.2021.112307.

K. Velmourougane, S. Thapa, and R. Prasanna, “Prospecting microbial biofilms as climate smart strategies for improving plant and soil health: A review,” Pedosphere, vol. 33, no. 1, pp. 129–152, Feb. 2023, https://doi.org/10.1016/j.pedsph.2022.06.037.

T. Berninger, N. Dietz, and Ó. González López, “Water-soluble polymers in agriculture: xanthan gum as eco-friendly alternative to synthetics,” Microbial Biotechnology. John Wiley and Sons Ltd, 2021. https://doi.org/10.1111/1751-7915.13867.

C. Chenu and A. M. Jaunet, “Cryo-scanning electron microscopy of microbial extracellular polysaccharides and their association with minerals,” OFAMS, Inc, 1992.

N. Amellal, F. Bartoli, G. Villemin, A. Talouizte, and T. Heulin, “Effects of inoculation of EPS-producing Pantoea agglomerans on wheat rhizosphere aggregation,” 1999.

P. Benard et al., “Microhydrological Niches in Soils: How mucilage and eps alter the biophysical properties of the rhizosphere and other biological hotspots,” Vadose Zone Journal, vol. 18, no. 1, pp. 1–10, Jan. 2019, https://doi.org/10.2136/vzj2018.12.0211.

Y. Sher et al., “Microbial extracellular polysaccharide production and aggregate stability controlled by switchgrass (Panicum virgatum) root biomass and soil water potential,” Soil Biol Biochem, vol. 143, Apr. 2020, https://doi.org/10.1016/j.soilbio.2020.107742.

J. C. Blankinship, S. J. Fonte, J. Six, and J. P. Schimel, “Plant versus microbial controls on soil aggregate stability in a seasonally dry ecosystem,” Geoderma, vol. 272, pp. 39–50, Jun. 2016, https://doi.org/10.1016/j.geoderma.2016.03.008.

Y. Wu et al., “Soil biofilm formation enhances microbial community diversity and metabolic activity,” Environ Int, vol. 132, Nov. 2019, https://doi.org/10.1016/j.envint.2019.105116.

C. Cheng, W. Shang-Guan, L. He, and X. Sheng, “Effect of exopolysaccharide-producing bacteria on water-stable macro-aggregate formation in soil,” Geomicrobiol J, vol. 37, no. 8, pp. 738–745, Jul. 2020, https://doi.org/10.1080/01490451.2020.1764677.

P. Deka et al., “Bacterial exopolysaccharide promotes acid tolerance in Bacillus amyloliquefaciens and improves soil aggregation,” Mol Biol Rep, vol. 46, no. 1, pp. 1079–1091, Feb. 2019, https://doi.org/10.1007/s11033-018-4566-0.

A. L. Godinho and S. Bhosle, “Sand aggregation by exopolysaccharide-producing Microbacterium arborescens - AGSB,” Curr Microbiol, vol. 58, no. 6, pp. 616–621, Jun. 2009, https://doi.org/10.1007/s00284-009-9400-4.

R. Nisha, B. Kiran, A. Kaushik, and C. P. Kaushik, “Bioremediation of salt affected soils using cyanobacteria in terms of physical structure, nutrient status and microbial activity,” International Journal of Environmental Science and Technology, vol. 15, no. 3, pp. 571–580, Mar. 2018, https://doi.org/10.1007/s13762-017-1419-7.

F. K. Olagoke et al., “Importance of substrate quality and clay content on microbial extracellular polymeric substances production and aggregate stability in soils,” Biol Fertil Soils, vol. 58, no. 4, pp. 435–457, May 2022, https://doi.org/10.1007/s00374-022-01632-1.

C. Xu, S. Zhang, C. ying Chuang, E. J. Miller, K. A. Schwehr, and P. H. Santschi, “Chemical composition and relative hydrophobicity of microbial exopolymeric substances (EPS) isolated by anion exchange chromatography and their actinide-binding affinities,” Mar Chem, vol. 126, no. 1–4, pp. 27–36, Sep. 2011, https://doi.org/10.1016/j.marchem.2011.03.004.

S. Zhang et al., “Enhancing soil aggregation and acetamiprid adsorption by ecofriendly polysaccharides hydrogel based on Ca2+- amphiphilic sodium alginate,” J Environ Sci (China), vol. 113, pp. 55–63, Mar. 2022, https://doi.org/10.1016/j.jes.2021.05.042.

D. M. Mager and A. D. Thomas, “Extracellular polysaccharides from cyanobacterial soil crusts: A review of their role in dryland soil processes,” Journal of Arid Environments, vol. 75, no. 2. pp. 91–97, Feb. 2011. https://doi.org/10.1016/j.jaridenv.2010.10.001.

R. Marasco, J. B. Ramond, M. W. Van Goethem, F. Rossi, and D. Daffonchio, “Diamonds in the rough: Dryland microorganisms are ecological engineers to restore degraded land and mitigate desertification,” Microb Biotechnol, 2023, https://doi.org/10.1111/1751-7915.14216.

I. Saha, S. Datta, and D. Biswas, “Exploring the role of bacterial extracellular polymeric substances for sustainable development in agriculture,” Current Microbiology, vol. 77, no. 11. Springer, pp. 3224–3239, Nov. 01, 2020. https://doi.org/10.1007/s00284-020-02169-y.

T. Siddharth, P. Sridhar, V. Vinila, and R. D. Tyagi, “Environmental applications of microbial extracellular polymeric substance (EPS): A review,” Journal of Environmental Management, vol. 287. Academic Press, Jun. 01, 2021. https://doi.org/10.1016/j.jenvman.2021.112307.

S.-M. Ham, I. Chang, D.-H. Noh, T.-H. Kwon, and B. Muhunthan, “Improvement of Surface Erosion Resistance of Sand by Microbial Biopolymer Formation,” Journal of Geotechnical and Geoenvironmental Engineering, vol. 144, no. 7, Jul. 2018, https://doi.org/10.1061/(asce)gt.1943-5606.0001900.

G. Colica, H. Li, F. Rossi, D. Li, Y. Liu, and R. De Philippis, “Microbial secreted exopolysaccharides affect the hydrological behavior of induced biological soil crusts in desert sandy soils,” Soil Biol Biochem, vol. 68, pp. 62–70, Jan. 2014, https://doi.org/10.1016/j.soilbio.2013.09.017.

N. Wu, H. X. Pan, D. Qiu, and Y. M. Zhang, “Feasibility of EPS-producing bacterial inoculation to speed up the sand aggregation in the Gurbantunggut Desert, Northwestern China,” J Basic Microbiol, vol. 54, no. 12, pp. 1378–1386, Dec. 2014, https://doi.org/10.1002/jobm.201400355.

M. Li, Y. Zhao, S. Bian, J. Qiao, X. Hu, and S. Yu, “A green, environment-friendly, high-consolidation-strength composite dust suppressant derived from xanthan gum”, https://doi.org/10.1007/s11356-021-16258-3/Published.

T. Lee et al., “Environmentally Friendly Methylcellulose-Based Binders for Active and Passive Dust Control,” ACS Appl Mater Interfaces, vol. 12, no. 45, pp. 50860–50869, Nov. 2020, https://doi.org/10.1021/acsami.0c15249.

J. Yan et al., “Synthesis and performance measurement of a modified polymer dust suppressant,” Advanced Powder Technology, vol. 31, no. 2, pp. 792–803, Feb. 2020, https://doi.org/10.1016/j.apt.2019.11.033.

J. L. Sieger, B. G. Lottermoser, and J. Freer, “Effectiveness of Protein and Polysaccharide Biopolymers as Dust Suppressants on Mine Soils: Results from Wind Tunnel and Penetrometer Testing,” Applied Sciences (Switzerland), vol. 13, no. 7, Apr. 2023, https://doi.org/10.3390/app13074158.

H. Fatehi, D. E. L. Ong, J. Yu, and I. Chang, “The Effects of Particle Size Distribution and Moisture Variation on Mechanical Strength of Biopolymer-Treated Soil,” Polymers (Basel), vol. 15, no. 6, Mar. 2023, https://doi.org/10.3390/polym15061549.

J. L. Sieger, B. G. Lottermoser, and J. Freer, “Effectiveness of Protein and Polysaccharide Biopolymers as Dust Suppressants on Mine Soils: Large-Scale Field Trials,” Mining, vol. 3, no. 3, pp. 428–462, Jul. 2023, https://doi.org/10.3390/mining3030026.

M. Dagliya, N. Satyam, and A. Garg, “Biopolymer based stabilization of Indian desert soil against wind-induced erosion,” Acta Geophysica, vol. 71, no. 1, pp. 503–516, Feb. 2023, https://doi.org/10.1007/s11600-022-00905-5.

T. T. More, J. S. S. Yadav, S. Yan, R. D. Tyagi, and R. Y. Surampalli, “Extracellular polymeric substances of bacteria and their potential environmental applications,” Journal of Environmental Management, vol. 144. Academic Press, pp. 1–25, Nov. 01, 2014. https://doi.org/10.1016/j.jenvman.2014.05.010.

S. Ghatak, S. Manna, and D. Roy, “First-Order Assessment of the Influence of Three EPS and Calcite-Producing Microbes Isolated from a Cemented Sand Site on Soil Shear Strength,” Geomicrobiol J, vol. 32, no. 9, pp. 761–770, Oct. 2015, https://doi.org/10.1080/01490451.2014.981646.

S. H. Sadeghi, A. Jafarpoor, M. Homaee, and B. Zarei Darki, “Changeability of rill erosion properties due to microorganism inoculation,” Catena (Amst), vol. 223, Apr. 2023, https://doi.org/10.1016/j.catena.2023.106956.

V. K. Shanmugam and V. R. Rangamaran, “Microbial Calcification: An insight into carbonate precipitation and its emerging influence in diverse applications,” Am. J. PharmTech Res, vol. 8, no. 4, 2018, [Online]. Available: www.ajptr.com

E. B. Roberson’ And and M. K. Firestone2, “Relationship between desiccation and exopolysaccharide production in a soil Pseudomonas sp,” 1992. [Online]. Available: https://journals.asm.org/journal/aem

W. S. Chang, M. Van De Mortel, L. Nielsen, G. N. De Guzman, X. Li, and L. J. Halverson, “Alginate production by Pseudomonas putida creates a hydrated microenvironment and contributes to biofilm architecture and stress tolerance under water-limiting conditions,” in Journal of Bacteriology, Nov. 2007, pp. 8290–8299. https://doi.org/10.1128/JB.00727-07.

R. Tecon and D. Or, “Biophysical processes supporting the diversity of microbial life in soil,” FEMS Microbiology Reviews, vol. 41, no. 5. Oxford University Press, pp. 599–623, Sep. 01, 2017. https://doi.org/10.1093/femsre/fux039.

P. Benard, S. Bickel, A. Kaestner, P. Lehmann, and A. Carminati, “Extracellular polymeric substances from soil-grown bacteria delay evaporative drying,” Adv Water Resour, vol. 172, Feb. 2023, https://doi.org/10.1016/j.advwatres.2022.104364.

D. Or, S. Phutane, and A. Dechesne, “Extracellular polymeric substances affecting pore‐scale hydrologic conditions for bacterial activity in unsaturated soils,” Vadose Zone Journal, vol. 6, no. 2, pp. 298–305, May 2007, https://doi.org/10.2136/vzj2006.0080.

Y. S. Guo et al., “Bacterial extracellular polymeric substances amplify water content variability at the pore scale,” Front Environ Sci, vol. 6, no. SEP, Sep. 2018, https://doi.org/10.3389/fenvs.2018.00093.

M. Brax, C. Buchmann, and G. E. Schaumann, “Review article biohydrogel induced soil-water interactions: How to untangle the gel effect? A review,” Zeitschrift fur Pflanzenernahrung und Bodenkunde, vol. 180, no. 2. Wiley-VCH Verlag, pp. 121–141, Apr. 01, 2017. https://doi.org/10.1002/jpln.201600453.

H. Zhang, J. Bian, H. Wan, N. Wei, and Y. Ma, “Soil–water characteristic curves of extracellular polymeric substances-affected soils and sensitivity analyses of correlated parameters,” Water Sci Technol Water Supply, vol. 21, no. 3, pp. 1323–1333, May 2021, https://doi.org/10.2166/ws.2020.377.

R. Rosenzweig, U. Shavit, and A. Furman, “Soil phvsics water retention curves of biofilm-affected soils using xanthan as an analogue”, https://doi.org/10.2136/sssai.

G. E. Schaumann, B. Braun, D. Kirchner, W. Rotard, U. Szewzyk, and E. Grohmann, “Influence of biofilms on the water repellency of urban soil samples,” Hydrol Process, vol. 21, no. 17, pp. 2276–2284, Aug. 2007, https://doi.org/10.1002/hyp.6746.

P. Cai et al., “Soil biofilms: microbial interactions, challenges, and advanced techniques for ex-situ characterization,” Soil Ecology Letters, vol. 1, no. 3–4. Springer Nature, pp. 85–93, Dec. 01, 2019. https://doi.org/10.1007/s42832-019-0017-7.

J. H. T. Zethof et al., “Prokaryotic community composition and extracellular polymeric substances affect soil microaggregation in carbonate containing semiarid grasslands,” Front Environ Sci, vol. 8, Jun. 2020, https://doi.org/10.3389/fenvs.2020.00051.

R. Cao et al., “Exopolysaccharide-producing bacteria enhanced Pb immobilization and influenced the microbiome composition in rhizosphere soil of pakchoi (Brassica chinensis L.),” Front Microbiol, vol. 14, 2023, https://doi.org/10.3389/fmicb.2023.1117312.

G. Z. De Caire, M. S. De Cano, R. M. Palma, and C. Z. De Mulé, “Changes in soil enzyme activities following additions of cyanobacterial biomass and exopolysaccharide,” Soil Biol and Biochem, vol. 32, issue 13, pp. 1985–1987. 2000. https://doi.org/10.1016/S0038-0717(00)00174-7.

A. Karimi, A. Tahmourespour, and M. Hoodaji, “The formation of biocrust and improvement of soil properties by the exopolysaccharide-producing cyanobacterium: a biogeotechnological study,” Biomass Convers Biorefin, 2022, https://doi.org/10.1007/s13399-022-02336-0.

R. J. L. Morcillo and M. Manzanera, “The effects of plant-associated bacterial exopolysaccharides on plant abiotic stress tolerance,” Metabolites, vol. 11, no. 6. MDPI AG, 2021. https://doi.org/10.3390/metabo11060337.

H. Naseem, M. Ahsan, M. A. Shahid, and N. Khan, “Exopolysaccharides producing rhizobacteria and their role in plant growth and drought tolerance,” Journal of Basic Microbiology, vol. 58, no. 12. Wiley-VCH Verlag, pp. 1009–1022, Dec. 01, 2018. https://doi.org/10.1002/jobm.201800309.

V. Sandhya and S. Z. Ali, “The production of exopolysaccharide by Pseudomonas putida GAP-P45 under various abiotic stress conditions and its role in soil aggregation,” Microbiology (Russian Federation), vol. 84, no. 4, pp. 512–519, Jul. 2015, https://doi.org/10.1134/S0026261715040153.

D. Ghosh, A. Gupta, and S. Mohapatra, “A comparative analysis of exopolysaccharide and phytohormone secretions by four drought-tolerant rhizobacterial strains and their impact on osmotic-stress mitigation in Arabidopsis thaliana,” World J Microbiol Biotechnol, vol. 35, no. 6, Jun. 2019, https://doi.org/10.1007/s11274-019-2659-0.

J. Kaur et al., “An exopolysaccharide-producing novel Agrobacterium pusense strain JAS1 isolated from snake plant enhances plant growth and soil water retention,” Sci Rep, vol. 12, no. 1, Dec. 2022, https://doi.org/10.1038/s41598-022-25225-y.

T. Fatima and N. K. Arora, “Pseudomonas entomophila PE3 and its exopolysaccharides as biostimulants for enhancing growth, yield and tolerance responses of sunflower under saline conditions,” Microbiol Res, vol. 244, Mar. 2021, https://doi.org/10.1016/j.micres.2020.126671.

T. Gu et al., “Microbial extracellular polymeric substances alleviate cadmium toxicity in rice (Oryza sativa L.) by regulating cadmium uptake, subcellular distribution and triggering the expression of stress-related genes,” Ecotoxicol Environ Saf, vol. 257, Jun. 2023, https://doi.org/10.1016/j.ecoenv.2023.114958.

P. S. P. Arachchige et al., “Sub-micron level investigation reveals the inaccessibility of stabilized carbon in soil microaggregates,” Sci Rep, vol. 8, no. 1, Dec. 2018, https://doi.org/10.1038/s41598-018-34981-9.

T. L. Swenson et al., “A novel method to evaluate nutrient retention by biological soil crust exopolymeric matrix,” Plant Soil, vol. 429, no. 1–2, pp. 53–64, Aug. 2018, https://doi.org/10.1007/s11104-017-3537-x.

O. Y. A. Costa, A. Pijl, and E. E. Kuramae, “Dynamics of active potential bacterial and fungal interactions in the assimilation of acidobacterial EPS in soil,” Soil Biol Biochem, vol. 148, Sep. 2020, https://doi.org/10.1016/j.soilbio.2020.107916.

R. Mikutta, U. Zang, J. Chorover, L. Haumaier, and K. Kalbitz, “Stabilization of extracellular polymeric substances (Bacillus subtilis) by adsorption to and coprecipitation with Al forms,” Geochim Cosmochim Acta, vol. 75, no. 11, pp. 3135–3154, Jun. 2011, https://doi.org/10.1016/j.gca.2011.03.006.

M. Zhang et al., “Selective retention of extracellular polymeric substances induced by adsorption to and coprecipitation with ferrihydrite,” Geochim Cosmochim Acta, vol. 299, pp. 15–34, Apr. 2021, https://doi.org/10.1016/j.gca.2021.02.015.

Y. Yi, W. Huang, and Y. Ge, “Exopolysaccharide: A novel important factor in the microbial dissolution of tricalcium phosphate,” World J Microbiol Biotechnol, vol. 24, no. 7, pp. 1059–1065, Jul. 2008, https://doi.org/10.1007/s11274-007-9575-4.

Y. Wang et al., “Extracellular polymeric substances and biocorrosion/biofouling: recent advances and future perspectives,” International Journal of Molecular Sciences, vol. 23, no. 10. MDPI, May 01, 2022. https://doi.org/10.3390/ijms23105566.

R. Breitenbach et al., “Corrosive extracellular polysaccharides of the rock-inhabiting model fungus Knufia petricola,” Extremophiles, vol. 22, no. 2, pp. 165–175, Mar. 2018, https://doi.org/10.1007/s00792-017-0984-5.

P. Gupta and B. Diwan, “Bacterial exopolysaccharide mediated heavy metal removal: A review on biosynthesis, mechanism and remediation strategies,” Biotechnology Reports, vol. 13. Elsevier B.V., pp. 58–71, Mar. 01, 2017. https://doi.org/10.1016/j.btre.2016.12.006.

P. M. Joshi and A. A. Juwarkar, “In vivo studies to elucidate the role of extracellular polymeric substances from Azotobacter in immobilization of heavy metals,” Environ Sci Technol, vol. 43, no. 15, pp. 5884–5889, Aug. 2009, https://doi.org/10.1021/es900063b.

D. Kalita and S. R. Joshi, “Study on bioremediation of lead by exopolysaccharide producing metallophilic bacterium isolated from extreme habitat,” Biotechnology Reports, vol. 16, pp. 48–57, Dec. 2017, https://doi.org/10.1016/j.btre.2017.11.003.

A. Tang et al., “Simultaneous leaching of multiple heavy metals from a soil column by extracellular polymeric substances of Aspergillus tubingensis F12,” Chemosphere, vol. 263, Jan. 2021, https://doi.org/10.1016/j.chemosphere.2020.127883.

A. Shukla, P. Parmar, D. Goswami, B. Patel, and M. Saraf, “Exemplifying an archetypal thorium-EPS complexation by novel thoriotolerant Providencia thoriotolerans AM3,” Sci Rep, vol. 11, no. 1, Dec. 2021, https://doi.org/10.1038/s41598-021-82863-4.

O. Y. A. Costa, J. M. Raaijmakers, and E. E. Kuramae, “Microbial extracellular polymeric substances: Ecological function and impact on soil aggregation,” Frontiers in Microbiology, vol. 9, no. JUL. Frontiers Media S.A., Jul. 23, 2018. https://doi.org/10.3389/fmicb.2018.01636.

C. Kantar, Z. Cetin, and H. Demiray, “In situ stabilization of chromium (VI) in polluted soils using organic ligands: The role of galacturonic, glucuronic and alginic acids,” J Hazard Mater, vol. 159, no. 2–3, pp. 287–293, Nov. 2008, https://doi.org/10.1016/j.jhazmat.2008.02.022.

Y. Chen, M. Wang, X. Zhou, H. Fu, X. Qu, and D. Zhu, “Sorption fractionation of bacterial extracellular polymeric substances (EPS) on mineral surfaces and associated effects on phenanthrene sorption to EPS-mineral complexes,” Chemosphere, vol. 263, Jan. 2021, https://doi.org/10.1016/j.chemosphere.2020.128264.

W. Zeng et al., “Role of extracellular polymeric substance (EPS) in toxicity response of soil bacteria Bacillus sp. S3 to multiple heavy metals,” Bioprocess Biosyst Eng, vol. 43, no. 1, pp. 153–167, Jan. 2020, https://doi.org/10.1007/s00449-019-02213-7.

G. Vinothini, S. Latha, M. Arulmozhi, and D. Dhanasekaran, “Statistical optimization, physio-chemical and bio-functional attributes of a novel exopolysaccharide from probiotic Streptomyces griseorubens GD5,” Int J Biol Macromol, vol. 134, pp. 575–587, Aug. 2019, https://doi.org/10.1016/j.ijbiomac.2019.05.011.

P. P. Han, Y. Sun, X. Y. Wu, Y. J. Yuan, Y. J. Dai, and S. R. Jia, “Emulsifying, flocculating, and physicochemical properties of exopolysaccharide produced by cyanobacterium Nostoc flagelliforme,” Appl Biochem Biotechnol, vol. 172, no. 1, pp. 36–49, Jan. 2014, https://doi.org/10.1007/s12010-013-0505-7.

F. Martínez-Checa, F. L. Toledo, K. El Mabrouki, E. Quesada, and C. Calvo, “Characteristics of bioemulsifier V2-7 synthesized in culture media added of hydrocarbons: Chemical composition, emulsifying activity and rheological properties,” Bioresour Technol, vol. 98, no. 16, pp. 3130–3135, Nov. 2007, https://doi.org/10.1016/j.biortech.2006.10.026.

C. Jia, P. Li, X. Li, P. Tai, W. Liu, and Z. Gong, “Degradation of pyrene in soils by extracellular polymeric substances (EPS) extracted from liquid cultures,” Process Biochemistry, vol. 46, no. 8, pp. 1627–1631, Aug. 2011, https://doi.org/10.1016/j.procbio.2011.05.005.

C. Calvo, G. A. Silva-Castro, I. Uad, C. García Fandiño, J. Laguna, and J. González-López, “Efficiency of the EPS emulsifier produced by Ochrobactrum anthropi in different hydrocarbon bioremediation assays,” in Journal of Industrial Microbiology and Biotechnology, Nov. 2008, pp. 1493–1501. https://doi.org/10.1007/s10295-008-0451-5.

P. J. Yesankar, M. Pal, A. Patil, and A. Qureshi, “Microbial exopolymeric substances and biosurfactants as ‘bioavailability enhancers’ for polycyclic aromatic hydrocarbons biodegradation,” International Journal of Environmental Science and Technology, vol. 20, no. 5, pp. 5823–5844, May 2023, https://doi.org/10.1007/s13762-022-04068-0.

Y. Zhang et al., “Extracellular polymeric substances enhanced mass transfer of polycyclic aromatic hydrocarbons in the two-liquid-phase system for biodegradation,” Appl Microbiol Biotechnol, vol. 90, no. 3, pp. 1063–1071, May 2011, https://doi.org/10.1007/s00253-011-3134-5.

S. Chamizo, A. Adessi, G. Mugnai, A. Simiani, and R. De Philippis, “Soil type and cyanobacteria species influence the macromolecular and chemical characteristics of the polysaccharidic matrix in induced biocrusts,” Microb Ecol, vol. 78, no. 2, pp. 482–493, Aug. 2019, https://doi.org/10.1007/s00248-018-1305-y.

A. Bhattacharjee et al., “Soil microbial EPS resiliency is influenced by carbon source accessibility,” Soil Biol Biochem, vol. 151, Dec. 2020, https://doi.org/10.1016/j.soilbio.2020.108037.

R. Raliya et al., “ZnO nanoparticles induced exopolysaccharide production by B. subtilis strain JCT1 for arid soil applications,” Int J Biol Macromol, vol. 65, pp. 362–368, 2014, https://doi.org/10.1016/j.ijbiomac.2014.01.060.

A. Shukla, K. Mehta, J. Parmar, J. Pandya, and M. Saraf, “Depicting the exemplary knowledge of microbial exopolysaccharides in a nutshell,” European Polymer Journal, vol. 119. Elsevier Ltd, pp. 298–310, Oct. 01, 2019. https://doi.org/10.1016/j.eurpolymj.2019.07.044.

A. Vaishnav, K. Upadhayay, D. Tipre, and S. Dave, “Utilization of mixed fruit waste for exopolysaccharide production by Bacillus species SRA4: medium formulation and its optimization,” 3 Biotech, vol. 10, no. 12, Dec. 2020, https://doi.org/10.1007/s13205-020-02545-2.

V. Ventorino et al., “Bioprospecting of exopolysaccharide-producing bacteria from different natural ecosystems for biopolymer synthesis from vinasse,” Chemical and Biological Technologies in Agriculture, vol. 6, no. 1, Dec. 2019, https://doi.org/10.1186/s40538-019-0154-3.

S. V. Patil, R. B. Salunkhe, C. D. Patil, D. M. Patil, and B. K. Salunke, “Bioflocculant exopolysaccharide production by Azotobacter indicus using flower extract of Madhuca latifolia L,” Appl Biochem Biotechnol, vol. 162, no. 4, pp. 1095–1108, Oct. 2010, https://doi.org/10.1007/s12010-009-8820-8.

A. Kumar, N. Sajna, K. V Swati, and S. Editors, “Polymer and composite materials microbial exopolysaccharides as novel and significant biomaterials.” A. Kumar, N. Sajna, K. V Swati, and S. eds. Springer, 2021.

P. Zhang et al., “Composition of EPS fractions from suspended sludge and biofilm and their roles in microbial cell aggregation,” Chemosphere, vol. 117, no. 1, pp. 59–65, 2014, https://doi.org/10.1016/j.chemosphere.2014.05.070.

H. Ba-Haddou et al., “Combination of 3D Fluorescence/PARAFAC and UV–Vis Absorption for the Characterization of Agricultural Soils from Morocco,” J Fluoresc, vol. 32, no. 6, pp. 2141–2149, Nov. 2022, https://doi.org/10.1007/s10895-022-03011-3.

B. Cania et al., “Biological soil crusts from different soil substrates harbor distinct bacterial groups with the potential to produce exopolysaccharides and lipopolysaccharides,” Microb Ecol, vol. 79, no. 2, pp. 326–341, Feb. 2020, https://doi.org/10.1007/s00248-019-01415-6.

C. Oertel, J. Matschullat, K. Zurba, F. Zimmermann, and S. Erasmi, “Greenhouse gas emissions from soils—A review,” Chemie der Erde, vol. 76, no. 3. Elsevier GmbH, pp. 327–352, Oct. 01, 2016. https://doi.org/10.1016/j.chemer.2016.04.002.

Downloads

Published

2023-12-31

How to Cite

[1]
D. Punsaldulam and O. Amumandal, “Microbial exopolymers for soil restoration and remediation: current progress and future perspectives”, Proc. Inst. Biol., vol. 39, no. 1, pp. 30–68, Dec. 2023.

Issue

Section

Review papers