Optimization and usability test result of multiplex PCR and fragment analysis method in microsatellite study of Mongolian Argali sheep populations

Authors

  • Baatar Delgerzul Laboratory of Genetics, Institute of Biology, Mongolian Academy of Sciences, Ulaanbaatar, Mongolia https://orcid.org/0000-0003-0488-394X
  • Zunduinbaatar Undurbayasgalan Laboratory of Genetics, Institute of Biology, Mongolian Academy of Sciences, Ulaanbaatar, Mongolia https://orcid.org/0000-0001-6288-9659
  • Jal Tumursukh Administration of Ulaan Taiga Specially Protected Areas, Khuvsgul, Mongolia
  • Shagdarjav Namsraijav Administration of Ikh Gazriin Chuluu National Park, Dundgovi, Mongolia
  • Khurelbaatar Tsegmidzaya Administration of Otgon Tenger Specially Protected Areas, Zavkhan, Mongolia
  • Tumurchudur Munkhbat Save Argali Sheep Non-Government Organization, Uvurkhangai, Mongolia
  • Gansukh Sukhbaatar Save Argali Sheep Non-Government Organization, Uvurkhangai, Mongolia
  • Sukhbaatar Amgalanbaatar Argali and Wildlife Research Center, Ulaanbaatar, Mongolia
  • Soyol Baasankhuu Laboratory of Paleozoology, Institute of Paleontology, Mongolian Academy of Sciences, Ulaanbaatar, Mongolia https://orcid.org/0000-0001-8765-5517
  • Batsukh Tserendulam Laboratory of Genetics, Institute of Biology, Mongolian Academy of Sciences, Ulaanbaatar, Mongolia https://orcid.org/0000-0002-8409-0968

DOI:

https://doi.org/10.5564/pib.v38i1.2546

Keywords:

optimization of multiplex PCR, population genetic parameters, microsatellite loci BM302, BM4505, INRA040, Argali sheep

Abstract

Studying the genetic diversity of Mongolian Argali sheep populations using microsatellite loci requires an accurate and world-standard method than Polyacrylamide gel electrophoresis (PAGE). Therefore, in this study, we developed a multiplex PCR for 3 high polymorphism loci (BM302, INRA040, BM4505) using fluorescent labeled primers (FAM, HEX, TAMRA), and tested the usability of this methodology to simultaneously amplify the alleles of multiple micro[1]satellite loci in a short amount of time. Using our multiplex PCR method, the alleles of those 3 loci were successfully amplified on a total of 99 samples from the Altai, Gobi, Khangai, and Khoridol Saridag populations, and their allele lengths were determined by the fragment analysis method. General genetic parameters were evaluated to determine the observed length of alleles on each microsatellite locus that was suitable for research. The number of alleles (Na) observed in Altai (15.00), Gobi Desert (16.67), and Khangai (13.33) populations were relatively high, while in the Khoridol Saridag population, it was lower (9.00). The number of effective alleles (Ne) was comparatively low in Altai (6.73), Gobi Desert (8.02), and Khoridol Saridag (4.2) populations, but considerably uniform in the Khangai population (9.94). Moreover, observed (Ho) and expected heterozygosity (He) was highest in Altai (0.80, 0.84), Gobi (0.74, 0.87), and Khangai (0.85, 0.89) populations. Although the genetic diversity of the BM302, BM4505, and INRA040 loci was high, the majority of the detected alleles had low frequency. In conclusion, multiplex PCR was successfully optimized and the amplified fragments were analyzed which resulted in preliminary population genetic results in a short period. Future research uti[1]lizing this multiplex PCR and fragment analysis methodology should be conducted with more microsatellite markers, leading to precise results concerning the conservation genetics of Argali sheep.

Монгол орны аргаль хонины популяцуудын микросателлитын судалгаанд мультиплекс ПГУ ба фрагментийн анализын аргазүйг тогтворжуулан туршсан дүнгээс

Монгол орны аргаль хонины генетик олон янз байдлыг микросателлитын локусуудаар судлахад ПААГ-аас илүү өндөр нарийвчлалтай, дэлхийн стандартад нийцсэн фрагмент анализын аргазүйгээр хийх шаардлага тулгарсан. Ингэхдээ олон микросателлитын локусын аллелийг богино хугацаанд олшруулахын тулд бид флуоресценц 3 өөр өнгөтэй (FAM, HEX, TAMRA) бодисоор тэмдэглэсэн праймераар полиморфизм өндөртэй 3 локусыг (BM302, INRA040, BM4505) сонгон мультиплекс ПГУ-ын арга зүй боловсруулж, энэ аргазүйг цаашид ашиглах боломжийг турших зорилгоор энэ судалгааг хийв. Боловсруулсан мултиплекс ПГУ-ын арга зүйг ашиглан Алтай, Говь, Хангай, Хорьдол Сарьдагийн популяцуудын нийт 99 дээжид дээрх 3 локусын аллелиудыг амжилттай олшруулж, аллелийн уртыг тодорхойлсон. Түүнчлэн микросателлитын локус бүрийн аллелиудын урт нь судалгаанд ашиглахад тохиромжтой эсэхийг шалган ерөнхий генетик үзүүлэлтүүдийг тооцоход ажиглагдсан аллелийн тоо Алтай (15.00), Говь (16.67), Хангайн (13.33) популяцад их, Хорьдол Сарьдагийн популяцад харьцангуй бага (9.00) байв. Эффектив аллелийн тоо Алтай (6.73), Говь (8.02), Хорьдол Сарьдагийн (4.2) популяцад хэт бага, Хангайн (9.94) популяцад харьцангуй жигд, хүлээгдэж буй гетерозигот байдал Алтай (0.80, 0.84), Говь (0.74, 0.87), Хангайн (0.85, 0.89) популяцад хамгийн өндөр байв. BM302, BM4505, INRA040 локусуудын генетик олон янз байдал өндөр ч ихэнх аллелиуд нь бага давтамжтай байв. Үүнээс дүгнэхэд, энэхүү боловсруулсан мултиплекс ПГУ амжилттай тогтворжсон бөгөөд олшруулсан бүтээгдэхүүнд фрагмент анализ хийн генетик үзүүлэлтүүдийг тооцож богино хугацаанд популяцийн генетикийн судалгаанд ач холбогдолтой урьдчилсан дүнг гарган авав. Цаашид мултиплекс ПГУ, фрагмент анализийн энэ арга зүйг ашиглан микросателлитын маркеруудын тоог нэмэгдүүлэн судалгааг үргэлжлүүлж аргалийн хамгааллын генетикийн илүү үнэн зөв дүгнэлт гаргах боломжтой гэж үзэв.

Түлхүүр үгc: мултиплекс ПГУ тогтворжуулалт, популяцын генетик үзүүлэлт, микросателлит BM302, BM4505, INRA040 локус, аргаль хонь

Abstract
101
PDF 72

References

“Ovis ammon - an overview | ScienceDirect Topics.” https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/ovis-ammon (accessed Feb. 10, 2022).

B. Delgerzul, Z. Unudbayasgalan, T. Bilguun, C. Battsetseg, B. Galbadrahk, and B. Tserendulam, “Genetic comparison of Altai and Gobi argali sheep (Ovis ammon) populations using mitochondrial and microsatellite markers: Implication on conservation,” Proc. Mong. Acad. Sci., pp. 54–61, Dec. 2019, https://doi.org/10.18632/oncotarget.23695.

J. Feng, M. R. Frisina, M. S. Webster, and G. Ulziimaa, “Genetic Differentiation of Argali Sheep Ovis Ammon in Mongolia Revealed by Mitochondrial Control Region and Nuclear Microsatellites Analyses,” J. Bombay Nat. Hist. Soc., vol. 106, pp. 38–44, 2009.

“The IUCN Red List of Threatened Species,” IUCN Red List of Threatened Species. https://www.iucnredlist.org/en (accessed Feb. 10, 2022).

T. T, R. Rr, R. Oa, Q. Tw, and R. Rp, “A population genetic comparison of argali sheep (Ovis ammon) in Mongolia using the ND5 gene of mitochondrial DNA; implications for conservation,” Mol. Ecol., vol. 13, no. 5, May 2004, https://doi.org/10.1111/j.1365-294X.2004.02123.x.

J. Tumursukh, “Survey of rare and endangered game mammals in Khuvsgul,” Mongolia, 1994.

C. Battsetseg, Z. Unudbayasgalan, J. Tumursukh, and Kh. Tumennasan, “Current population structure of argali sheep (Ovis ammon) in Khoridol Saridag,” Proc. Inst. Biol., vol. 28, pp. 12–13, 2018.

G. Wingard, “Dietary overlap between argali sheep and domestic livestock in Mongolia,” Grad. Stud. Theses Diss. Prof. Pap., Jan. 2005, [Online]. Available: https://scholarworks.umt.edu/etd/6496

Zahler et al., “Illegal and Unsustainable Wildlife Hunting and Trade in Mongolia,” Mong. J. Biol. Sci., vol. 2, no. 2, 23-31, 2004, https://doi.org/10.22353/mjbs.2004.02.14.

S. J. O’Brien, “A role for molecular genetics in biological conservation.,” Proc. Natl. Acad. Sci., vol. 91, no. 13, pp. 5748–5755, Jun. 1994, https://doi.org/10.1073/pnas.91.13.5748.

K. A. Selkoe and R. J. Toonen, “Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers,” Ecol. Lett., vol. 9, no. 5, pp. 615–629, May 2006, https://doi.org/10.1111/j.1461-0248.2006.00889.x.

K. S. Kim and T. W. Sappington, “Microsatellite Data Analysis for Population Genetics,” in Microsatellites, vol. 1006, S. K. Kantartzi, Ed. Totowa, NJ: Humana Press, 2013, pp. 271–295. https://doi.org/10.1007/978-1-62703-389-3_19.

D. Sint, L. Raso, and M. Traugott, “Advances in multiplex PCR: balancing primer efficiencies and improving detection success,” Methods Ecol. Evol., vol. 3, no. 5, pp. 898–905, Oct. 2012, https://doi.org/10.1111/j.2041-210X.2012.00215.x.

U. Zunduibaatar, B. Tsenddorj, and T. Batsukh, “DNA extraction method based on salting out method from caprine faecal sample,” Proc. Inst. Biol., vol. 34, pp. 203–209, 2018.

C. Maudet et al., “A standard set of polymorphic microsatellites for threatened mountain ungulates (Caprini, Artiodactyla): PRIMER NOTE,” Mol. Ecol. Notes, vol. 4, no. 1, pp. 49–55, Mar. 2004, https://doi.org/10.1046/j.1471-8286.2003.00563.x.

A. Karp, P. G. Isaac, and D. S. Ingram, Eds., Molecular tools for screening biodiversity: plants and animals, 1. ed. London Weinheim: Chapman & Hall, 1998.

N. Mittal and A. Dubey, “Microsatellite markers- A new practice of DNA based markers in molecular genetics,” Pharmacogn. Rev., vol. 3, pp. 235–246, Jul. 2009.

Battsetseg Ch, Odbayar T, Tumursukh J, and Tumennasan Kh, “Current population structure of argali sheep (Ovis ammon) in Khoridol Saridag,” Proc. Inst. Biol., vol. 28, pp. 12–13, 2011.

BS Weir, Intraspecific differentiation in Molecular systematic, DM Hillis and C Moritz, Eds. Sinauer Associates, 1990.

M. V. Trotter and H. G. Spencer, “The generation and maintenance of genetic variation by frequency-dependent selection: constructing polymorphisms under the pairwise interaction model,” Genetics, vol. 180, no. 3, pp. 1547–1557, Nov. 2008, https://doi.org/10.1534/genetics.108.088880.

R. R. Hudson, “Statistics in Genetics: Genetic Data Analysis. Methods for Discrete Population Genetic Data. Bruce S. Weir. Sinauer, Sunderland, MA” Science, vol. 250, no. 4980, pp. 575–575, Oct. 1990, https://doi.org/10.1126/science.250.4980.575.

Downloads

Published

2021-12-27

How to Cite

[1]
B. Delgerzul, “Optimization and usability test result of multiplex PCR and fragment analysis method in microsatellite study of Mongolian Argali sheep populations”, Proc. Inst. Biol., vol. 38, no. 1, pp. 180–192, Dec. 2021.

Issue

Section

Articles

Categories