Identifying the habitat connectivity of Wapiti (Cervus canadensis) in Mongolia

Authors

DOI:

https://doi.org/10.5564/pib.v38i1.2534

Keywords:

core habitat, least-cost path, centrality, wapiti

Abstract

Habitat loss and fragmentation are serious threats to biodiversity worldwide. In the different mountain ranges of Mongolia, we evaluated the habitat connectivity of Wapiti, aiming to provide insights for support to population conservation. By using Wapiti occurrence data and seven variables related to climatic, geographic, and anthropogenic factors (human disturbance index), we modeled the habitat suitability using the Maximum Entropy Model (MaxEnt). The corridor design model (Linkage Mapper) was used to identify and evaluate the linkages between core habitats. The MaxEnt models suggest that human disturbance and latitudinal effects associated with climatic variables played the most important and complex role in Wapiti spatial distribution. The ecological corridors of Wapiti were composed of 130 core habitats (CHs) and 386 linkages or least-cost paths (LCPs). The shortest LCPs connecting the core habitats were mapped in the Khentii and Khuvsgul mountain ranges, which was probably due to the higher habitat suitability. In contrast, the longest LCPs were in the Altai and Khangai mountain ranges, where CHs were more fragmented and had the lowest habitat suitability based on MaxEnt modeling. Our study suggests the priority areas for protecting Wapiti and the key locations where the wildlife road crossing structures or animal guidance measures are needed.

Монгол орны халиун буга (Cervus canadensis)-ын амьдрах орчны холбоос нутгийн судалгаа

Амьдрах орчны доройтол, хуваагдал нь дэлхийн биологийн олон янз байдалд ноцтой аюул учруулсаар байгаа билээ. Монгол орны өргөн тархацтай амьтны нэг болох Халиун бугын амьдрах орчны холбогдох байдлыг уулсын мужлалаар үнэлэн популяцийн хамгаалалд санал зөвлөмж өгөх зорилгоор энэхүү ажлыг хийж гүйцэтгэв. Халиун бугын тохиолдоц болон уур амьсгал, газарзүйн болон хүний нөлөөллийн индекс зэрэг 7 хувьсагч үзүүлэлтэд тулгуурлан Максент (MaxEnt - Maximum Entropy Model) ашиглан тохиромжит амьдрах орчныг загварчилж, цөм амьдрах орчны холбогдох байдлыг гаргахдаа Linkage Mapper программ хангамж ашиглав. Хүний нөлөөллийн индекс болон өргөргийн дагуу өөрчлөгдөн хувьсах уур амьсгалын үзүүлэлтүүд нь халиун бугын орон зайн байршилд чухал нөлөөтэй болохыг харуулж байна. Судалгаанд хамрагдсан бүс нутгийн хэмжээнд Халиун бугын 130 цөм амьдрах орчин (ЦАО), тэдгээрийг холбосон 386 боломжит холбоос нутаг (хамгийн бага өртөг бүхий зам) байна. Хэнтий болон Хөвсгөлийн уулсын мужлал дахь Халиун бугын холбоос нутгийн урт харьцангуй богино байгаа нь тус уулсын мужид амьдрах орчны тохиромжит байдал бусад нутгаас харьцангуй илүү байгааг илтгэн харуулна. Харин Алтай болон Хангайн уулархаг нутагт тохиромжит амьдрах орчны хэмжээ бага байхаас гадна цөм амьдрах орчин илүү тасархайтсан, илүү урт холбоос нутагтай болох нь загварчлалын үр дүнд тогтоогдов. Энэхүү судалгааны үр дүнд халиун бугын холбоос нутагтай огтлолцож буй шугаман дэд бүтэц бүхий нутгийг тодорхойлон гаргав.

Түлхүүр үгс: цөм амьдрах орчин, хамгийн бага өртөг бүхий зам, ач холбогдлын эрэмбэ, халиун буга

Downloads

Download data is not yet available.
Abstract
253
PDF
240

References

A. G. Bannikov, "Mammals of the People’s Republic of Mongolia (V. G. Heptner, ed.)," 1954.

N. Batsaikhan, S. Shar, D. Lkhagvasuren, S. R. B. King, and R. Samiya, A field guide to the mammals of Mongolia, 3 ed. 2022.

S. Dulamtseren, "Ungulate ecology and hunting value in Hentii and Hangai Mountain Range. In: Mammals of Mongolia," p. 160, 1989.

J. Wingard et al., "Silent steppe: the illegal wild life trade crisis," Zoological Society of London, Washington D.C, 2006.

E. L. Clark et al., "Mongolian red list of mammals," vol. 1, 2006. [Online]. Available: https://www.nationalredlist.org/files/2012/08/Mongolia-Red-List-of-Mammals-2006-Mongolian-.pdf.

J. A. Wiens, N. C. Stenseth, B. V. Horne, and R. A. Ims, "Ecological Mechanisms and Landscape Ecology," Oikos, vol. 66, no. 3, p. 369, 1993, https://doi.org/10.2307/3544931.

K. R. Crooks and M. A. Sanjayan, "Connectivity Conservation: Maintaining Connections for Nature," pp. 1-20, 2006.

A. M. Savada and R. L. Worden, Mongolia: a country study, 2 ed. Washington, D.C: Federal Research Division, 1991, p. 320.

H. E. Beck, N. E. Zimmermann, T. R. McVicar, N. Vergopolan, A. Berg, and E. F. Wood, "Present and future Köppen-Geiger climate classification maps at 1-km resolution," Sci Data, vol. 5, no. 180214, 2018, https://doi.org/10.1038/sdata.2018.214.

M. Kottek, J. Grieser, C. Beck, B. Rudolf, and F. Rubel, "World Map of the Köppen-Geiger climate classification updated," Meteorologische Zeitschrift, vol. 15, no. 3, pp. 259-263, 2006, https://doi.org/10.1127/0941-2948/2006/0130.

J. Elith, S. J. Phillips, T. Hastie, M. Dudik, Y. E. Chee, and C. J. Yates, "A statistical explanation of MaxEnt for ecologists," Diversity and Distributions, vol. 17, pp. 43-57, 2011.

M. Heiner et al., "Modeling habitat connectivity of a nomadic migrant facing rapid infrastructure development: Khulan habitat connectivity in the Southeast Gobi Region, Mongolia," The Nature Conservansy, Ulaanbaatar, 2016.

S. J. Phillips, R. P. Anderson, and R. E. Schapire, "Maximum entropy modeling of species geographic distributions," Ecological Modelling, vol. 190, no. 3-4, pp. 231-259, 2006, https://doi.org/10.1016/j.ecolmodel.2005.03.026

M. H. Graham, "Confronting multicollinearity in ecological multiple regression," Ecology, vol. 84, no. 11, pp. 2809-2815, 2003, https://doi.org/10.1890/02-3114

S. J. Phillips, "Transferability, sample selection bias and background data in presence-only modelling: a response to Peterson et al. (2007)," Ecography, vol. 31, no. 2, pp. 272-278, 2008, https://doi.org/10.1111/j.0906-7590.2008.5378.x

B. H. McRae and D. M. Kavanagh, "Linkage mapper user guide," 2011. [Online]. Available: http://www.circuitscape.org.

C. Carrol, B. McRae, and A. Brooks, "Use of Linkage Mapping and Centrality Analysis Across Habitat Gradients to Conserve Connectivity of Gray Wolf Populations in Western North America," Conservation Biology, vol. 26, pp. 78-87, 2012, https://doi.org/10.1111/j.1523-1739.2011.01753.x.

T. Dutta, S. Sharma, B. McRae, P. S. Roy, and R. DeFries, "Connecting the dots: mapping habitat connectivity for tigers in central India," Regional Environmental Change, vol. 16, no. S1, pp. 53-67, 2016, https://doi.org/10.1007/s10113-015-0877-z.

C. Qiangqiang et al., "Identification of potential ecological corridors for Marco Polo sheep in Taxkorgan Wildlife Nature Reserve, Xinjiang, China," Biodiversity Science, vol. 27, no. 2, pp. 186-199, 2019, https://doi.org/10.17520/biods.2018264.

B. H. McRae. Barrier Mapper Connectivity Analysis Software. [Online] Available: Available from https://linkagemapper.org

M. Heiner et al., "Identifying Conservation Priorities in the Face of Future Development: Applying Development by Design in the Mongolian Gobi," The Nature Conservancy, Ulaanbaatar, 2017.

K. P. Burnham and D. R. Anderson, "Model Selection and Inference," 1998, https://doi.org/10.1007/978-1-4757-2917-7.

C. Tian et al., "Impacts of livestock grazing, topography and vegetation on distribution of wildlife in Wanglang National Nature Reserve, China," Global Ecology and Conservation, vol. 20, p. e00726, 2019, https://doi.org/10.1016/j.gecco.2019.e00726.

M. G. R. Vollstädt et al., "Direct and indirect effects of climate, human disturbance and plant traits on avian functional diversity," Global Ecology and Biogeography vol. 26, no. 8, pp. 1-10, 2017, https://doi.org/10.1111/geb.12606.

R. M. Ewers and R. K. Didham, "Confounding factors in the detection of species responses to habitat fragmentation," Biological Reviews, vol. 81, no. 1, pp. 17-42, 2005, https://doi.org/10.1017/S1464793105006949.

A. Henrik., "Effects of Habitat Fragmentation on Birds and Mammals in Landscapes with Different Proportions of Suitable Habitat: A Review," Oikos, vol. 71, no. 3, p. 355, 12 1994, https://doi.org/10.2307/3545823.

M. Panahandeh, A. R. Yavari, E. Salehi, and B. Malekmohammadi, "Analyses of habitat changes of Caspian red deer (Cervus elaphus maral Gray, 1850) based on temporal changes of effective area and functional connectivity ‒ A case study of Lisar protrcted area," Applied Ecology and Environmental Research, vol. 14, no. 4, pp. 71-83, 2016, https://doi.org/10.15666/aeer/1404_071083.

Y. van der Hoek, B. Zuckerberg, and L. L. Manne, "Application of habitat thresholds in conservation: Considerations, limitations, and future directions," Global Ecology and Conservation, vol. 3, pp. 736-743, 2015, https://doi.org/10.1016/j.gecco.2015.03.010.

Downloads

Published

2022-12-29

How to Cite

[1]
Y. Altanbagana and G. Naranbaatar, “Identifying the habitat connectivity of Wapiti (Cervus canadensis) in Mongolia”, Proc. Inst. Biol., vol. 38, no. 1, pp. 9–28, Dec. 2022.

Issue

Section

Articles

Categories