Sedimentary basins, hydrocarbons, graphite, coal, and Cu-Au deposits - from Mongolia to the Pacific margin: Interplay between the ubiquitous orthogonal fracture network and Global Wrench Tectonics

Authors

  • Karsten M. Storetvedt Geophysical Institute, University of Bergen, 5020 Bergen, Norway
  • Per Michaelsen Geoscience Center, School of Geology and Mining Engineering, Mongolian University of Science and Technology, Ulaanbaatar, 14191, Mongolia https://orcid.org/0000-0003-4075-8943

DOI:

https://doi.org/10.5564/mgs.v29i58.3234

Keywords:

Mongolia, NE China, wrench tectonics, elongate sedimentary basins, ore resources

Abstract

Mongolia is exceptionally rich in coal and copper-gold resources - with world-class deposits like Tavan Tolgoi, Oyu Tolgoi and Erdenet. Thus, the mining industry has a crucial importance for the national economy, yet most of the country remain very underexplored. Within today's global tectonics, an acceptable understanding of metal enrichments - including leaching, the internal hydrostatic-hydraulic pumping system, and surface emplacement mechanisms - has remained unresolved. However, a broader view of the structural situation in the Mongolia-China region shows a close link between orientation of elongate sedimentary basins, important mineral belts, and the fundamental orthogonal fracture/fault system. In the east the tectonic trend is dominantly northeast, while it is northwest in western areas. The main east Mongolian graphite deposits have northeast structural trends like numerous regional Cu and Au belts. A new theory of the earth, Global Wrench Tectonics, offers an exciting approach to better understanding the various facets of Earth's geological history and its surface resources. Earth’s degassing, dynamo-tectonic consequences, inertia-driven crustal wrench tectonics, as well as surface products such as water, hydrocarbons and ore deposits are given a coherent system explanation. Many hydrocarbons are products from the interior of our slowly degassing Earth, with massive hydrocarbon fields such as Songliao and the Yamal megaproject producing from the basement. Crustal thinning in the Songliao region is about the same as in southeast Mongolia, suggesting that they may have had similar degassing and crustal evolution histories. As such, it is not unlikely that the underexplored Mesozoic basins of southeast Mongolia - particularly at the deepest levels and/or in the adjacent crystalline basement - may have important hydrocarbon potential.

Downloads

Download data is not yet available.
Abstract
53
PDF
44

Author Biography

Karsten M. Storetvedt, Geophysical Institute, University of Bergen, 5020 Bergen, Norway

Mongolia is exceptionally rich in coal and copper-gold resources - with world-class deposits like Tavan Tolgoi, Oyu Tolgoi and Erdenet. Thus, the mining industry has a crucial importance for the national economy, yet most of the country remain very underexplored. Within today's global tectonics, an acceptable understanding of metal enrichments - including leaching, the internal hydrostatic-hydraulic pumping system, and surface emplacement mechanisms - has remained unresolved. However, a broader view of the structural situation in the Mongolia-China region shows a close link between orientation of elongate sedimentary basins, important mineral belts, and the fundamental orthogonal fracture/fault system. In the east the tectonic trend is dominantly NE, while it is NW in western areas. The main east Mongolian graphite deposits have NE structural trends like numerous regional Cu and Au belts. A new theory of the earth, Global Wrench Tectonics, offers an exciting approach to better understanding the various facets of Earth's geological history and its surface resources. Earth’s degassing, dynamo-tectonic consequences, inertia-driven crustal wrench tectonics, as well as surface products such as water, hydrocarbons and ore deposits are given a coherent system explanation. Many hydrocarbons are products from the interior of our slowly degassing Earth, with massive hydrocarbon fields such as Songliao and the Yamal megaproject producing from the basement. Crustal thinning in the Songliao region is about the same as in SE Mongolia, suggesting that they may have had similar degassing and crustal evolution histories. As such, it is not unlikely that the underexplored Mesozoic basins of SE Mongolia - particularly at the deepest levels and/or in the adjacent crystalline basement - may have important hydrocarbon potential.

 

References

Absar, N., Raza, M., Roy, M., Naqvi, S.M., Roy, A.K. 2009. Composition and weathering conditions of Paleoproterozoic upper crust of Bundelkand craton, Central India. Records from geochemistry of clastic sediments of 1.9 Ga Gwalior Group. Precambrian Research, vol. 168(3-4), p. 313-329. https://doi.org/10.1016/j.precamres.2008.11.001

Agroli, G., Okamoto, A., Uno, M., Tsuchiya, N. 2020. Transport and Evolution of Supercritical Fluids During the Formation of the Erdenet Cu-Mo Deposit, Mongolia. Geosciences, vol. 10(5), p. 201. https://doi.org/10.3390/geosciences10050201

Albaréde, F., Van der Hilst, R.. 1999. New mantle convection model may reconcile conflicting evidence. Eos, Transactions American Geophysical Union, vol. 80(45), p. 535-5396. https://doi.org/10.1029/EO080i045p00535

Alfvén, H., Arrhenius, G. 1976. Evolution of the Solar System. National Aeronautics and Space Admin, Washington D.C., NASA SP, 345 p.

Allégre, C., Porier, J.P., Humbler, E., Hofmann, A.W. 1995. The chemical composition of the Earth. Earth and Planetary Science Letters, vol. 134(3-4), p. 515-526 https://doi.org/10.1016/0012-821X(95)00123-T

Aubouin, J., Blanchet, J.F.S., Tardy, M. 1977. Téthys (Mésogée) et Atlantique: données de la géologie. Comptes Rendus de l'Académie des Sciences, Série D - Sciences Naturelles, vol. 285, p. 1025-1028.

Austrheim, H. 1987. Eclogitization of lower crustal granulites by fluid migration through shear zones. Earth and Planetary Science Letters, vol. 81(2-3), p. 221-232. https://doi.org/10.1016/0012-821X(87)90158-0

Belousov, V.V. 1962. Basic Problems in Geotectonics. McGraw-Hill, New York, 816 p.

Belousov, V.V. 1982. Certain problems of structure and conditions of evolutions of transition zones between continents and oceans. Tectonophysics, vol. 105(1), p. 79-102. https://doi.org/10.1016/0040-1951(84)90196-3

Belousov, V.V. 1990. Certain trends in present-day geosciences. In: Critical aspects of plate tectonic theory, Theophrastus Publications, vol. 1, p. 3-15.

Benioff, H. 1949. Seismic Evidence for the Fault Origin of Oceanic Deeps. Geological Society of America Bulletin, vol. 60(12), p. 1837-1866. https://doi.org/10.1130/0016-7606(1949)60[1837:SEFTFO]2.0.CO;2

Benioff, H. 1954. Orogenesis and deep crustal structures: additional evidence from seismology. Geological Society of America Bulletin, vol. 65(5), p. 385-400. https://doi.org/10.1130/0016-7606(1954)65[385:OADCSE]2.0.CO;2

Boucot, A.J., Johnson, J.G. 1973. Silurian Brachiopods. In: Atlas of Paleobiogeography, Elsevier, Amsterdam.

Cameron, A.G.W. 1962. The formation of the Sun and Planets. Icarus, vol. 1(1-6), p. 13-69. https://doi.org/10.1016/0019-1035(62)90005-2

Cameron, A.G.W. 1978. Physics of primitive solar nebula and giant gaseous protoplanets. In: Protostars and Planets. Tucson, University of Arizona Press. 453 p.

Cameron, A.G.W. 1985. Formation and evolution of the primitive solar nebula. In: Protostars and Planets II (eds. D.C.Black and M.S.Matthews), University Arizona Press, Tucson, Arizona, p. 1073-1099.

Cattermole, P., Moore, P. 1997. Atlas of Venus. Cambridge University Press, 159 p.

Choi, D.R. 1984. The Japan Basin - A Tectonic Trough. Journal of Petroleum Geology, vol. 7(4), p. 437-450. https://doi.org/10.1111/j.1747-5457.1984.tb00888.x

Chu, R., Zhu, L., Helmberger, D.V. 2009. Determinations of earthquake focal depths and source time functions in central Asia using teleseismic P-waveforms. Geophysical Research Letters, 36 (1), L17605. https://doi.org/10.1029/2009GL039494

Chu, R., Zhu, L., Helmberger, D.V. 2009. Determinations of earthquake focal depths and source time functions in Central Asia using teleseismic P-waveforms. Geophysical Research Letters, vol. 36, L17317. https://doi.org/10.1029/2009GL039494

Cluer, J.K., Kotlyar, B., Gantsetseg, O., Togtokh, D., Wood, G., Ullrich T. 2005. Geology of the Boroo Gold deposits, northern Mongolia. In: Geodynamics and metallogeny of Mongolia with a special emphasis on copper and gold deposits. IAGOD Guidebook Series 11, London, p. 105-117.

Cooke, M.H., Stephens, D.J., Bridgewater, J. 1976. Powder mixing - a literature survey. Powder Technology, vol. 15(1), p. 1-20. https://doi.org/10.1016/0032-5910(76)80025-3

Crane, D., Kavalieris, L. 2012. Geologic overview of the Oyu Tolgoi porphyry Cu-Au-Mo deposits, Mongolia. Society of Economic Geologists, Special Publication, vol. 16, p. 187-213. https://doi.org/10.5382/SP.16.09

Das, D., Mondal, T.K., Hossain, M.S. 2019. Quantification of Quartz Reefs and Mafic Dykes of Bundelkand Craton, Central India: A Study Based on Spatial and Fractal Analysis. Journal of the Geological Society of India, vol. 94, p. 227-237. https://doi.org/10.1007/s12594-019-1301-y

Dicken, C.L., Dunlap, Pamela, Parks, H.L., Hammarstrom, J.M., Zientek, M.L. 2016. Spatial database for a global assessment of undiscovered copper resources: U.S. Geological Survey Scientific Investigations Report 2010-5090-Z, 29 p.

Donald, M.B., Roseman, B. 1962. Mechanisms in a horizontal drum mixer. British Chemical Engineering, vol. 7, p. 749-753.

Dziewonski, A.M., Woodhouse, J.H. 1987. Global images of the Earth’s interior. Science, vol. 236(4797), p. 37-48. https://doi.org/10.1126/science.236.4797.37

Egorkin, A.V., Zuganov, S.K., Pavlenkova, N.A., Chernyshev, N.M. 1987. Results of lithosphere studies from long-range profiles in Siberia. Tectonophysics, vol. 140(1), p. 29-47. https://doi.org/10.1016/0040-1951(87)90138-7

Ekstrom, G., Dziewonski, A.M. 1998. The unique anisotropy of the Pacific upper mantle. Nature, vol. 394, p. 168-172. https://doi.org/10.1038/28148

Eshagh, M., Hussain, M., Tenzer, R., Romeshkani, M. 2016. Moho Density Contrast in Central Eurasia from GOCE Gravity Gradients. Remote Sensing, vol. 8(5), 418. https://doi.org/10.3390/rs8050418

Falcon, N.L. 1967. The Geology of the NE Margin of the Arabian Basement Shield. Advancement of Science, vol. 24, p. 31-42.

Fan, L.T., Chen, Y.-M., Lai, F.S. 1990. Recent Developments in Solids Mixing. Powder Technology, vol. 61(3), p. 255-287. https://doi.org/10.1016/0032-5910(90)80092-D

Feng, L. 2021. High-resolution crustal and uppermost mantle structure beneath Central Mongolia from Rayleigh waves and receiver functions. Journal of Geophysical Research, Solid Earth, vol. 126(4), e2020JB021161. https://doi.org/10.1029/2020JB021161

Fielder, G., Fryer, R.J., Gosh, P.J.S., Whitford-Stark, J.L., Wilson L. 1974. Lineament patterns on the Moon, Mars, and Mercury. In: Proceedings of the First International Conference on the New Basement Tectonics, Salt Lake City, Utah, vol. 5, p. 379-387.

Fischer, R.A., Cottrell, E., Hauri, E., Lee, K.M. 2020. The carbon content of Earth and its core. PNAS, vol. 117(16), p. 8743-8749. https://doi.org/10.1073/pnas.1919930117

Forte, A.M., Dziewonski, A.M., O’Connell, R.J. 1995. Continent-ocean chemical heterogeneity in the mantle based on seismic tomography. Science, vol. 268(5209), p. 386-388. https://doi.org/10.1126/science.268.5209.386

Fowler, C.M.R. 1990. The Solid Earth, An Introduction to Global Geophysics. Cambridge University Press, 478 p.

Galli, G., Pan, D. 2013. A closer look at supercritical water. PNAS, vol. 110(16), p. 6250-6251. https://doi.org/10.1073/pnas.1303740110

Ge, X., Shen, C., He, P., Jin, Y., Li, Sh., Chen, Y. 2022. The roles of hydrocarbons on the mineralization of Carlin-type gold deposits, Nanpanjiang Basin, Soth China. Ore Geology Reviews, vol. 149, p. 105107. https://doi.org/10.1016/j.oregeorev.2022.105107

Glasby, G.P. 2006. Abiotic origin of hydrocarbons: An historical overview. Recourse Geology, vol. 56(1), p. 83-96. https://doi.org/10.1111/j.1751-3928.2006.tb00271.x

Glickson, A.Y., Lambert, I.B. 1973. Relations in space and time between major Precambrian Shield units: an interpretation of Western Australian data. Earth and Planetary Science Letters, vol. 20(3), p. 395-403. https://doi.org/10.1016/0012-821X(73)90016-2

Gold, T. 1987. Power from the Earth: Deep Earth Gas - Energy for the Future. Dent and Sons, London, 208 p.

Gold, T., 1999. The Deep Hot Biosphere. Copernicus, New York, 235 p. https://doi.org/10.1007/978-1-4612-1400-7

Goldfarb, R.J., Groves, D.I. 2015. Orogenic gold. Common or evolving fluid and metal sources. Lithos, vol. 233, p. 2-26. https://doi.org/10.1016/j.lithos.2015.07.011

Goldfarb, R.J., Pitcairn, I. 2023. Orogenic gold: is a genetic association with magmatism realistic? Mineralium Deposita, vol. 58, p. 5-35. https://doi.org/10.1007/s00126-022-01146-8

Graham, S.A., Hendrix, M.S., Johnson, C.L., Badamgarav, D., Badarch, G., Amory, J., Porter, M., Barsbold, R., Webb, L.E., Hacker, B.R. 2001. Sedimentary record and tectonic implications of Mesozoic rifting in southeast Mongolia. GSA Bulletin vol. 113(12), p. 1560-1579. https://doi.org/10.1130/0016-7606(2001)113<1560:SRATIO>2.0.CO;2

Grieve, R.A.F. 1982. The record of impact on Earth: Implications for a major Cretaceous/Tertiary impact event. Geological Society of America, Special Papers, vol. 190, p. 25-37. https://doi.org/10.1130/SPE190-p25

Guo, Z., Cao, Y., Wang, X., John Chen, Y., Ning, J., He, W., Tang, Y., Feng, Y. 2014. Crust and upper mantle structures beneath Northeast China from receiver function studies. Earthquake Science, vol. 27, p. 265-275. https://doi.org/10.1007/s11589-014-0076-x

Guo, Z., Wang, X., Lui, W. 1997. Reservoir-forming features of abiotic origin gas in Songliao Basin. Science in China Series D: Earth Sciences, vol. 40, p. 621-626. https://doi.org/10.1007/BF02877691

Gutmanis, J., Batchelor, T., Cotton, L., Baker, J. 2012. Hydrocarbon production from fractured basement formations. GeoScience Limited, vol. 11, 43 p.

Guy, A., Tiberi, C., Mijiddorj, S. 2024. Crustal Structures from Receiver Functions and Gravity Modelling in Central Mongolia. Journal of Geophysical Research, Solid Earth, vol. 129(1), e2023JB027614. https://doi.org/10.1029/2023JB027614

Hallam, A. 1977. Biogeographic evidence bearing on the creation of Atlantic seaways in the Jurassic. In: WEST, R.M. (ed.) Palaeontology and Plate Tectonics. Milwaukee Public Museum, Special Publication in Biology and Geology, vol. 2, p. 23-39.

Hallam, A. 1992. Phanerozoic Sea-Level Changes. Columbia University Press, New York, 266 p.

Hallam, A., Wignall, P.G. 1999. Mass extinctions and sea-level changes. Earth-Science Reviews, vol. 48(4), p. 217-250. https://doi.org/10.1016/S0012-8252(99)00055-0

Harris, C. 1986. A Quantitative Study of Magmatic Inclusions in the Plutonic Ejecta of Ascension Island. Journal of Petrology, vol. 27(1), p. 251-276. https://doi.org/10.1093/petrology/27.1.251

Hast, N. 1973. The existence of horizontal stress fields and orthogonal fracture systems in the Moon’s crust. Modern Geology, vol. 4, p. 73-84.

Hayes, J.M., Waldbauer, J.R. 2006. The carbon cycle and associated redox processes through time. Philosophical Transactions of the Royal Society London B, Biological Sciences, vol. 361(1470), p. 931-950. https://doi.org/10.1098/rstb.2006.1840

He, J., Wu, Q., Sandvol, E., Ni, J., Gallegos, A., Gao, M., Ulziibat, M., Demberel, S. 2016. The crustal structure of central Mongolia using receiver functions. Tectonics, vol. 35(6), p. 1392-1403. https://doi.org/10.1002/2015TC004027

Henley, R.W., Berger, B.R. 2013. Nature’s refineries - metals and metalloids in arc volcanoes. Earth Science Reviews, vol. 125, p. 146-170. https://doi.org/10.1016/j.earscirev.2013.07.007

Henley, R.W., Mernagh, T., Leys, C., Troitzsch, U., Bevitt, J., Brink, F., Gardner, J., Knuefing, L., Wheeler, J., Limaye, A., Turner, M., Zhang, Y. 2022. Potassium silicate alteration in porphyry copper gold deposits: a case study at the giant maar-diatreme hosted Grasberg deposit, Indonesia. Journal of Volcanology and Geothermal Research, vol. 432, p.107710. https://doi.org/10.1016/j.jvolgeores.2022.107710

Hill, K.M., Caprihan, A., Kakalios, J. 1997. Bulk segregation in rotated granular material by magnetic resonance imaging. Physical Review Letters, vol. 78(1), p. 50-53. https://doi.org/10.1103/PhysRevLett.78.50

Hirschmann, M., Kohlstedt, D. 2012. Water in Earth’s mantle. Physics Today, vol. 65(3), p. 40-45. https://doi.org/10.1063/PT.3.1476

Holser, W.T., Magaritz, M. 1987. Events near the Permian-Triassic boundary. Modern Geology, vol. 11, p. 155-180.

Hovland, M., Fichler, C., Rueslatten, H., Johnson, H.K. 2006. Deep-rooted piercement structures in deep sedimentary basins - Manifestation of supercritical water generation at depth? Journal of Geochemical Exploration, vol. 89(1), p. 157-160. https://doi.org/10.1016/j.gexplo.2005.11.056

Hoyle, F. 1955. Frontiers in Astronomy. Heinemann, Melbourne, 422 p.

Hulen, J.B., Collister, J.W. 1999. The oil-bearing, Carlin-type gold deposits of Yankee Basin, Alligator Ridge District, Nevada. Economic Geology, vol. 94, p. 1029-1050. https://doi.org/10.2113/gsecongeo.94.7.1029

Hunt, S., Collins, L.G., Skobelin, E.A. 1992. Expanding Geospheres. Energy and Mass Transfers from Earth’s interior. Polar Publishing (Calgary), 421 p.

Karig, D.E. 1971. Origin and development of the marginal basin in the western Pacific. Journal of Geophysical Research, vol. 76(11), p. 2542-2561. https://doi.org/10.1029/JB076i011p02542

Kaufmann, W.J. 1988. Universe. New York, Freeman and Company, 666 p.

Kavalieris, I., Khashgerel, B.E., Morgan,L.E., Undrakhtamir, A,. Borohul, A. 2017. Characteristics and 40Ar/39Ar Geochronology of the Erdenet Cu-Mo Deposit, Mongolia. Economic Geology, vol. 112(5), p. 1033-1053. https://doi.org/10.5382/econgeo.2017.4500

Kellogg, L.H., Bradford, H.H., van der Hilst, R.D. 1999. Compositional stratification in the deep mantle. Science, vol. 283(5409), p. 1881-1884. https://doi.org/10.1126/science.283.5409.1881

Kendall, J.-M., Shearer, P.M. 1995. On the structure of the lowermost mantle beneath the southwest Pacific, southeast Asia and Australia. Physics of the Earth and Planetary Interiors, vol. 92, p. 85-98. https://doi.org/10.1016/0031-9201(95)03063-3

Khashgerel, B.E., Rye, R., Hedenquist, J.W., Kavalieris, I. 2006, Geology and reconnaissance isotope study of the Oyu Tolgoi porphyry Cu-Au system, South Gobi, Mongolia: Economic Geology, v. 101(3), p. 503-522. https://doi.org/10.2113/gsecongeo.101.3.503

Koning, T. 2019. Exploring in Asia, Africa and the Americas for oil & gas in naturally fractured basement reservoirs: best practices & lessons learned. Georesources, vol. 21(4), p. 10-18. https://doi.org/10.18599/grs.2019.4.10-18

Kononenko, V.V., Gololobov, V.M., Konov, V.I. 2016. Latent laser-induced graphitization of diamond. Applied Physics A, vol. 122(3), p. 1-7. https://doi.org/10.1007/s00339-016-9789-0

Le Pichon, X., Lallemant, S., Fournier, M., Cadet, J.-P., Kobayashi, K. 1994. Shear Partitioning in eastern Nankai Trough: evidence from submersible dives. Earth and Planetary Science Letters, vol. 128(3-4), p. 77-83. https://doi.org/10.1016/0012-821X(94)90136-8

Lee, K.Y. 1986. Petroleum geology of the Songliao basin, Northeast China. Unites States Department of the Interior, Open-File Report, p. 86-502. https://doi.org/10.3133/ofr86502

Leech, M.L. 2001. Arrested orogenic development: eclogitization, delamination, and tectonic collapse. Earth and Planetary Science Letters, vol. 185(1-2), p. 149-159. https://doi.org/10.1016/S0012-821X(00)00374-5

Liebscher, A. 2010. Aqueous fluids at elevated pressure and temperature. Geofluids, vol. 10(1-2), p. 3-19. https://doi.org/10.1111/j.1468-8123.2010.00293.x

Lobzova, R.V. 1975. Graphite and alkaline rocks of the Botogol massive area. Nauka, Moscow. 123 p. (in Russian)

Lyatsky, H.V., Friedman, G., Lyatsky, V.B. 1999. Principles of Practical Tectonic Analysis of Cratonic Regions. Springer-Verlag, New York, 392 p.

Mahfoud, R.F., 2000. Theory links lithospheric rotation to possible abiogenic oil recharge. Offshore, May 2000, p. 102-108. https://doi.org/10.1145/341836.337252

Mahfoud, R.F., Beck, J.N. 1995. Why the Middle East fields may produce oil forever. Offshore, April 1995, p. 56-62.

Malvoisin, B., Brunet, F. 2023. Barren ground depressions, natural H2 and orogenic gold deposits: Spatial link and geochemical model. Science of the Total Environment, vol. 856(1), 158969. https://doi.org/10.1016/j.scitotenv.2022.158969

Manzi, M. Durrheim, R.J., Hein, A.A., King, N. 2012. 3D edge detection seismic attributes used to map potential conduits for water and methane in deep gold mines in the Witwatersrand basin, South Africa. Geophysics, vol. 77(5), p. 133-147. https://doi.org/10.1190/geo2012-0135.1

Matjuschkin, V., Woodland, A.B., Frost, D.J., Yaxley, G.M. 2020. Reduced methane-bearing fluids as a source for diamond. Scientific Reports, vol. 10, 6961. https://doi.org/10.1038/s41598-020-63518-2

Meissner, R. 1986. The Continental Crust. Academic Press, London, 426 p.

Melton, C.E., Giardini, A.A. 1974. The composition and significance of gas released from natural diamonds from Africa and Brazil. American Mineralogist, vol. 59, p. 775-782.

Michaelsen, P. 2002. Mass extinction of peat-forming plants and the effect on fluvial styles across the Permo-Triassic boundary, Bowen Basin, Australia. Palaeogeography, Palaeoclimatology, Palaeoecology, vol. 179(3-4), p. 173-188. https://doi.org/10.1016/S0031-0182(01)00413-8

Michaelsen, P. 2016. Late Permian coal formation under boreal conditions along the shores of the Mongol-Transbaikalia seaway. New Concepts in Global Tectonics Journal, vol. 4(4), p. 615-636.

Michaelsen, P., Henderson, R.A. 2000a. Facies relationships and cyclicity of high-latitude, Late Permian coal measures, Bowen Basin, Australia. International Journal of Coal Geology, vol. 44(1), p. 19-48. https://doi.org/10.1016/S0166-5162(99)00048-8

Michaelsen, P., Henderson, R.A. 2000b. Sandstone petro-facies expressions of multiphase basinal tectonics and arc magmatism: Permian-Triassic north Bowen Basin, Australia. Sedimentary Geology, vol. 136(1-2), p. 113-136. https://doi.org/10.1016/S0037-0738(00)00090-7

Michaelsen, P., Henderson, R.A., Crosdale, P.J., Fanning, C.M. 2001. Age and significance of the Platypus-Tuff Bed, a regional reference horizon in the Upper Permian Moranbah Coal Measures, north Bowen Basin. Australian Journal of Earth Sciences, vol. 48(2), p. 183-192. https://doi.org/10.1046/j.1440-0952.2001.00854.x

Michaelsen, P., Henderson, R.A., Crosdale, P.J., Mikkelsen, S.O. 2000. Facies architecture and depositional dynamics of the Upper Permian Rangal Coal Measures, Bowen Basin, Australia. Journal of Sedimentary Research, vol. 70(4), p. 879-895. https://doi.org/10.1306/2DC4093F-0E47-11D7-8643000102C1865D

Michaelsen, P., Storetvedt, K.M. 2023. Tectonic evolution of a sequence of related late Permian transtensive coal-bearing sub-basins, Mongolia: A global wrench tectonics portrait. Mongolian Geoscientist, vol. 28, p. 1-53. https://doi.org/10.5564/mgs.v28i57.3200

Michaelsen, P., Storetvedt, K.M. 2023b. Protracted destabilization and collapse of peat mire ecosystems at the Permo-Triassic boundary recorded by a sequence of related transtensive sub-basins in central and southern Mongolia. Permophiles, vol. 76, p. 46-51.

Milkov, A.V. 2000. Worldwide distribution of submarine mud volcanoes and associated gas hydrates. Marine Geology, vol. 167(1-2), p. 29-42. https://doi.org/10.1016/S0025-3227(00)00022-0

Mkhabela, M., Manzi, M. 2017. Detection of potential methane gas pathways in deep South African gold mines. Journal of Geophysics and Engineering, vol. 14(4), p. 960-974. https://doi.org/10.1088/1742-2140/aa6fc8

Morariu, D. 2012. Contribution to hydrocarbon occurrences in basement rocks. Neftegasovaya geologia. Teoria i practica, 7(3), p. 1-16. http://www.ngtp.ru/rub/9/51_2012.pdf

Mordvinova, V.V., Deschamps, A., Dugarma, T., Déverchère, J., Munkhuu, U., San’kov, V., Artem’ev, A.A., Perrot, J. 2007. Velocity structure of the lithosphere on the 2003 Mongolian-Baikal transect from SV waves. Izvestiya. Physics of the Solid Earth, vol. 43(2), p. 119-129. https://doi.org/10.1134/S1069351307020036

Morelli, A., Dziewonski, A.M. 1987. Topography of the core-mantle boundary and lateral homogeneity of the liquid core. Nature, vol. 325(6106), p. 678-683. https://doi.org/10.1038/325678a0

Norvick, M.S., Handke, R. 2005. Southern Mongolia - Assessment of Coal Prospectivity. BHP Billiton Presentation, Brisbane, March 2005.

O’Bannon, E., Xia, G., Shi, F., Wirth, R., King, A., Dobrzhinetskaya, L. 2020. The transformation of diamond to graphite: Experiments reveal the presence of an intermediate linear carbon. Diamonds and Related Materials, vol. 108, p. 107876. https://doi.org/10.1016/j.diamond.2020.107876

Okuchi, T. 1997. Hydrogen partitioning into molten iron at high pressure: implications for Earth’s core. Science, vol. 278, p. 1781-1784. https://doi.org/10.1126/science.278.5344.1781

Pavlenkova, N.I, Romanyuk, T.V. 1991. Seismo-gravity modelling for the crust of Siberia. Geology and Geophysics, vol. 1, p. 34-42 (in Russian).

Pavlenkova, N.I. 1996. Crust and upper mantle structure in Northern Eurasia from seismic data. Advances in Geophysics, vol. 37, p. 1-133. https://doi.org/10.1016/S0065-2687(08)60269-1

Pavlenkova, N.I. 1998. Endogenous Regimes and Plate Tectonics in Northern Eurasia. Physics and Chemistry of the Earth, vol. 23(7), p. 790-810. https://doi.org/10.1016/S0079-1946(98)00093-7

Pearson, D.G., Davies, G.R., Nixon, P.H., Milledge, H.J. 1998. Graphitized diamond from a peridotite massif in Morocco and its implications for anomalous diamond occurrences. Nature, vol. 338(6210), p. 60-62. https://doi.org/10.1038/338060a0

Phillips, R.J., Hansen, V.L. 1994. Tectonic and magmatic evolution of Venus. Annual Review of Earth and Planetary Sciences, vol. 22, p. 597-654. https://doi.org/10.1146/annurev.earth.22.1.597

Pinet, B., Montadert, L., Curnelle, R., Cazes, M., Marillier, F., Rolet, J., Tomassino, A., Galdeano, A., Patriat, Ph., Brunet, M-F., Olivet, J.L., Schaming, M., Lefort J.-P., Arrieta. A., Riaza, C. 1987. Crustal thinning on the Aquitaine shelf, Bay of Biscay, from deep seismic data. Nature, vol. 325(6104), p. 513-516. https://doi.org/10.1038/325513a0

Poirier, J.-P. 1994. Light elements in the Earth’s outer core: A critical review. Physics of the Earth and Planetary Interiors, vol. 85(3–4), p. 319-337. https://doi.org/10.1016/0031-9201(94)90120-1

Porter, T.M. 2015. The geology, structure and mineralization of the Oyu Tolgoi porphyry copper-gold-molybdenum deposits, Mongolia: A review. Geoscience Frontiers, v. 7(3), p. 1-33. https://doi.org/10.1016/j.gsf.2015.08.003

Prokofiev, V.Y., Banks, D.A., Lobanov, K.V., Selektor, S.L, . Milichko, V.A., Akinfiev, N.N., Borovikov, A.A., Lüders, V., Chicherov, M.V. 2020. Exceptional Concentrations of Gold Nanoparticles in 1.7 Ga Flid Inclusions from the Kola Superdeep Borehole, Northwest Russia. Scientific Reports, vol. 10, p. 1108. https://doi.org/10.1038/s41598-020-58020-8

Ramberg, H. 1951. Remarks on the average chemical composition of granulite facies and amphibolite to epidote amphibolite facies gneisses in West Greenland. Greenland's Geological Survey. Announcements from the Danish Geological Association vol. 12, p. 27-34.

Rampino, M.R., Caldeira, K., Zhu, Y. 2021. A pulse of the Earth: A 27.5 Myr underlying cycle in coordinated geological events over the last 260 Myr. Geoscience Frontiers, vol. 12(6), 101245. https://doi.org/10.1016/j.gsf.2021.101245

Richter, F.M. 1985. Models for the Archaean thermal regime. Earth and Planetary Science Letters, vol. 73(2-4), p. 350-360. https://doi.org/10.1016/0012-821X(85)90083-4

Ross, C.A., Ross, J.R.P. 1987. Late Palaeozoic sea levels and depositional sequences. Cushman Foundation for Foraminiferal Research Special Publication, vol. 24, p. 137-149.

Russ. Acad. Sci. 1998. Homologue of rocks in the Kola Superdeep Borehole and on the surface. In: Proceedings of the Workshop Apatity, 13-14 May, 1998.

Saintilan, N.J., Spangenberg, J.E., Chiaradia, M., Chelle-Michou, C., Stephens, M.B., Fontboté, L. 2019. Petroleum as source and carrier of metals in epigenic sediment-hosted mineralization. Scientific Reports, vol. 9, p. 8283. https://doi.org/10.1038/s41598-019-44770-7

Scheidegger, A.E. 1963. Principles of Geodynamics. Springer-Verlag, Berlin, 362 p. https://doi.org/10.1007/978-3-662-12781-0

Scheidegger, A.E. 1982. Principles of Geodynamics. Berlin, Springer, 398 p. https://doi.org/10.1007/978-3-642-68457-9

Schienbein, P., Marx, D. 2020. Assessing the properties of supercritical water in terms of structural dynamics and electronic polarization effects. Physical Chemistry Chemical Physics, vol. 22(19), p. 10462-10479. https://doi.org/10.1039/C9CP05610F

Schrauder, M., Navon, O. 1994. Hydrous and carbonatitic mantle fluids in fibrous diamonds from Jwaneng, Botswana. Geochimica et Cosmochimica Acta, vol. 58(2), p. 761-771. https://doi.org/10.1016/0016-7037(94)90504-5

Sebastian, N., Tkalcic, H., Sippl, Ch., Kim, S., Reading, A.M., Chen, Y., Fontaine, F.R. 2023. The crust-mantle transition beneath Northeast China from P-wave receiver functions. Frontiers in Earth Science, vol. 11, p. 1144819. https://doi.org/10.3389/feart.2023.1144819

Sephton. M.A., Hazen, R.M. 2013. On the origin of deep hydrocarbons. Reviews in Mineralogy & Geochemistry, vol. 75, p. 449-465. https://doi.org/10.2138/rmg.2013.75.14

Shen, P., Pand, H., Hattori, K., Cooke, D.R., Seitmuratova, E. 2018. Large Palaeozoic and Mesozoic porphyry deposits in the Central Asian Orogenic Belt: Geodynamic settings, magmatic sources, and genetic models. Gondwana Research, vol. 58, p. 161-194. https://doi.org/10.1016/j.gr.2018.01.010

Sibson, R.H. 1987. Earthquake rupturing as a mineralizing agent in hydrothermal systems. Geology, vol. 15(8), p. 701-704. https://doi.org/10.1130/0091-7613(1987)15<701:ERAAMA>2.0.CO;2

Sikdar, A., Dutta, D., Misra, S. 2023. Superplastic deformation inside the knife-sharp shear bands in mid-crustal granites. Journal of Structural Geology, vol. 177, p. 104980. https://doi.org/10.1016/j.jsg.2023.104980

Simandl, G.J., Paradis, S., Akam, C. 2015. Graphite deposit types, their origin, and economic significance. In: Symposium on Strategic and Critical Materials Symposium Proceedings. British Columbia Geological Survey Paper 2015-3, p. 163-171.

Singer, D.A., Berger, V.I., Moring, B.C. 2008. Porphyry Copper Deposits of the World: Database and Grade and Tonnage Models. U.S. Geological Survey Open-File Report 2008-1155, version 1.0. https://doi.org/10.3133/ofr20081155

Singh, P.K., Verma, S.K., Singh, V.K., Moreno, J.A., Oliveira, E.P., Li, X.H., Malviya, V.P., Prakash, D. 2021. Geochronology and petrogenesis of the TTG gneisses and granitoids from the Central Bundelkand Craton, India: Implications for Archean crustal evolution and cratonization. Precambrian Research, vol. 359, 106210. https://doi.org/10.1016/j.precamres.2021.106210

Smit, K.V., Shirey, S.B. 2018. How Do Diamonds Form in the Deep Earth? Gems and Geology, vol. 54, p. 440-445.

Sonnenfeld, P. 1981. The Phanerozoic Tethys Sea. In: Tethys, The Ancestral Mediterranean. Dowden, Hutchinson and Ross, Stroudsburg (USA), p. 18-53.

Spjeldnæs, N. 1961. Ordovician climatic zones. Norsk Geologisk Tidsskrift, vol. 41, p. 45-77.

Stöcklin, J. 1968. Structural History and Tectonics of Iran: A Review. American Association of Petroleum Geologists Bulletin, USA, vol. 52, p. 1229-1258. https://doi.org/10.1306/5D25C4A5-16C1-11D7-8645000102C1865D

Storetvedt, K.M. 1990. The Tethys Sea and the Alpine-Himalayan orogenic belt. Physics of the Earth Planetary Interiors, vol. 62(1-2), p. 141-184.

Storetvedt, K.M. 1997. Our Evolving Planet. Bergen, Alma Mater, 456 p. https://doi.org/10.1016/0031-9201(90)90198-7

Storetvedt, K.M. 2003/2023. Global Wrench Tectonics. Bergen, Fagbokforlaget, 397 p.

Storetvedt, K.M. 2011. Aspects of Planetary Formation and the Precambrian Earth. New Concepts in Global Tectonics, vol. 59, p. 60-83.

Storetvedt, K.M., Longhinos, B. 2012. The Atlantic and its bordering continents - A wrench tectonic analysis: Lithospheric deformation, basin histories and major hydrocarbon provinces. New Concepts in Global Tectonics, vol. 64, p. 30-68.

Sun, L., Xu, C.P., Xiao, K.Y., Zhu, Y.S., Yan, L.Y. 2018. Geological characteristics, metallogenic regularities and the exploration of graphite deposits in China, China Geology, vol. 1(3), p. 425-434. https://doi.org/10.31035/cg2018044

Tappert, R., Stachel, T., Harris, J.W., Muehlenbachset, K., Ludwig, T., Brey, G.P. 2005. Subducting oceanic crust: The source of deep diamond. Geology, vol. 33, p. 565-568. https://doi.org/10.1130/G21637.1

Tatnefti, O.A.O. 2001: Map of Mesozoic sedimentary basins of Mongolia 1:3,500.000 (in Russian).

Tavella, F., Höppner, H., Tkachenko, V., Medvedev, N., Capotondi, F., Golz, T., Kai, Y., Manfredda, M., Pedersoli, E., Prandolini, M., Stojanovic N., Tanikawa, T., Teubner, U., Toleikis, S., Ziaja, B. 2017. Soft x-ray induced femtosecond solid-to-solid phase transition. High Energy Density Physics, vol. 24, p. 22-27. https://doi.org/10.1016/j.hedp.2017.06.001

Thompson, P.H., Judge, A.S., Lewis, T.J. 1995. Thermal parameters in rock units of the Winter Lake-Lac de Gras area, central Slave Province, Northwest Territories - implications for diamond genesis. Geological Survey of Canada, Current Research, 1995-E, p. 125-135. https://doi.org/10.4095/205196

Trümpy, R. 1971. Stratigraphy in mountain belts Quarterly Journal of the Geological Society of London, vol. 126, p. 293-318. https://doi.org/10.1144/gsjgs.126.1.0293

Trümpy, R. 1965. Zur geosynclinalen Vorgerschichte der Schweizer Alpen. Umschau, vol. 18, p. 573-577.

Tumiati, S., Tiraboschi, C., Miozzi, F., Vitale-Brovarone, A., Manning, C.E., Sverjensky, D.A., Milani, S., Poli, S. 2020. Dissolution susceptibility of glass-like carbon versus crystalline graphite in high-pressure aqueous fluids and implications for the behaviour of organic matter in subduction zones. Geochimica et Cosmochimica Acta, vol. 273, p. 383-402. https://doi.org/10.1016/j.gca.2020.01.030

Tungalag, N., Sereenen, J., Khashgerel, B., Mijiddorj, C., Kavalieris, I. 2019. Characteristics of the Late Devonian Tsagaan Suvarga Cu-Mo deposit, Southern Mongolia. Mineralium Deposita, vol. 54(3), p.1-12. https://doi.org/10.1007/s00126-018-0812-6

Turekian, K.K. 1977. Oceans. Prentice-Hall, 170 p.

Umbgrove, J.H.F. 1942, 1947. The Pulse of the Earth. The Hague, Marinus Nijhoff, 385 p. https://doi.org/10.1007/978-94-017-6568-8

Van der Hilst, R.D., Karason, H. 1999. Compositional heterogeneity in the bottom 1000 kilometers of earth’s mantle: toward a hybrid convection model. Science, vol. 283(5409), p. 1885-1888. https://doi.org/10.1126/science.283.5409.1885

Wadati, K. 1929. Shallow and deep earthquakes. Geophysical Magazine, 2, 1-36.

Walther, J.V. 1994. Fluid-rock reactions during metamorphism at mid-crustal conditions. Journal of Geology, vol. 102(5), p. 559-570. https://doi.org/10.1086/629698

Watanabe, Y., Stein, H.J. 2000. Re-Os ages for the Erdenet and Tsagaan Suvarga porphyry Cu-Mo deposits, Mongolia, and tectonic implications. Economic Geology, vol. 95(7), p. 1537-1542. https://doi.org/10.2113/95.7.1537

Weber, M., Davis, J.P. 1990. Evidence of a laterally variable lower mantle structure from P- and S-waves. Geophysical Journal International, vol. 102(1), p. 231-255. https://doi.org/10.1111/j.1365-246X.1990.tb00544.x

Webster, J.W. 2006. Melt Inclusions in Plutonic Rocks. Mineralogical Association of Canada, Short Course Series, vol. 36, 237 p.

Wegener, A. 1929/66. The Origin of Continents and Oceans. Dover Publications, 248 p.

Weis, P., Driesner, T., Heinrich, C.A. 2012. Porphyry-Copper ore shells form at stable pressure-temperature fronts within dynamic fluid plumes. Science, vol. 338(6114), p. 1613-1616. https://doi.org/10.1126/science.1225009

Williams, Q., Garnero, E.J. 1996. Seismic evidence for partial melt at the base of Earth’s mantle. Science, vol. 273(5281), p. 1528-1530. https://doi.org/10.1126/science.273.5281.1528

Williams-Jones, A.E., Bowell, R.J., Migdisov, A.A. 2009. Gold in Solution. Elements, 5(5), p. 281-287. https://doi.org/10.2113/gselements.5.5.281

Wilson, J.T. 1954. The development and structure of the crust. In: The Earth as a Planet. Chicago, Chicago University Press.

Wood, B.J. 1993. Carbon in the core. Earth and Planetary Science Letters, vol. 117(3-4), p. 593-607. https://doi.org/10.1016/0012-821X(93)90105-I

Yakubchuk, A., Cole, A., Seltmann, R., Shatov, V. 2002. Tectonic Setting, Characteristics, and Regional Exploration Criteria for Gold Mineralization in the Altaid Orogenic Collage: The Tien Shan Province as a Key Example (book chapter). https://doi.org/10.5382/SP.09.09

Zemtsov, V.A. 2007. Influence of Earth rotation on continental motions. Gondwana Research, vol. 12(3), p. 242-251. https://doi.org/10.1016/j.gr.2006.10.008

Zheng, Y., Shen, W., Zhou, L., Yang, Y., Xie, Z., Ritzwoller, M.H. 2011. Crust and uppermost mantle beneath the North China Craton, northeastern China, and the Sea of Japan from ambient noise tomography. Journal of Geophysical Research, vol. 116(B12). p. 312. https://doi.org/10.1029/2011JB008637

Downloads

Published

2024-06-17

How to Cite

Storetvedt, K. M., & Michaelsen, P. . (2024). Sedimentary basins, hydrocarbons, graphite, coal, and Cu-Au deposits - from Mongolia to the Pacific margin: Interplay between the ubiquitous orthogonal fracture network and Global Wrench Tectonics. Mongolian Geoscientist, 29(58), 19–54. https://doi.org/10.5564/mgs.v29i58.3234

Issue

Section

Articles