A Study on Interactions of the SARS-CoV-2 Spike Proteins with the Human Toll-like Receptor 4 using Molecular Dynamic Simulations
DOI:
https://doi.org/10.5564/jimdt.v4i1.2659Keywords:
COVID-19, Spike protein, Human TLR4, Molecular dynamics simulationsAbstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) that causes coronavirus disease 2019 (COVID-19) has speared around the world since December 2019. SARS-CoV-2 induces the human innate and adaptive immune systems, and the activation pathways are not still fully understood. However, several studies have shown that interaction between the S1 subunit of SARS-CoV-2 spike proteins and human toll-like receptor 4 (hTLR4) activates the innate immune responses. It leads to the cytokines over secretions and may facilitate the ‘cytokines storm’ that contributes to the severity of the COVID-19 patients. However, the atomic-level explanation of the interaction between spike proteins and hTLR4 has not yet been elucidated. In this study, we performed molecular dynamics simulations of spike protein and hTLR4 to clarify their interaction. We show the possible interactions of spike protein and hTLR4.
SARS-CoV-2 Вирусийн Спайк Уураг ба Хүний Толл-төст Рецептор 4 Уураг хоорондын Харилцан Үйлчлэлийн Молекулын Динамик Симуляци
Хураангуй: COVID-19 өвчний үүсгэгч SARS-CoV-2 вирус нь 2019 оны 12 сараас эхлэн дэлхий даяар тархаад байна. SARS-CoV-2 вирус нь төрөлхийн болон өвөрмөц дархлааны системийг идэвхжүүлдэг ба идэвхжүүлэх зам одоо ч бүрэн ойлгогдоогүй байна. Сүүлийн үеийн судалгаагаар SARS-CoV-2 вирусийн спайк уураг нь хүний толл-төст рецептор 4 уурагтай харилцан үйлчлэх замаар төрөлхийн дархлааны хариу үйлдлийг өдөөж, олон төрлийн цитокинуудын хэт их нийлэгжлийг идэвхжүүлдэг болохыг харуулсан. Цитокинуудын хэт их нийлэгжил нь COVID-19-тэй өвчтөний хүндрэлийн зэргийг нэмэгдүүлдэг. Гэсэн хэдий ч спайк уураг болон хүний TLR4 уураг хоорондын харилцан үйлчлэлийн талаар атомын түвшинд нарийн тайлбарлаагүй байна. Энэ ажлаар SARS-CoV-2 вирусийн спайк уураг ба хүний TLR4 уураг хоорондын харилцан үйлчлэлийг молекулын динамик симуляцийн аргаар судлав. Симуляциар SARS-CoV-2 вирусийн спайк уургийн ялгаатай хоёр гинжний амин төгсгөлийн домеин ба рецепторт холбогдогч домеин хамтарч хүний TLR4 уурагтай холбогдож болохыг харуулав. Энэ үр дүн SARS-CoV-2 вирусийн спайк уураг болон хүний TLR4 уураг хоорондын харилцан үйлчлэлийн механизмыг ойлгоход чухал мэдээлэл болно.
Түлхүүр үгс: COVID-19, Спайк глико-уураг, Хүний TLR4, Молекулын динамик симуляци
Downloads
188
References
N. Zhu, “A Novel Coronavirus from Patients with Pneumonia in China, 2019,” N. Engl. J. Med, Vol. 382, no. 8, Feb., pp. 727–733, 2020, doi: https://doi.org/10.1056/NEJMoa2001017.
J. S. M. Peiris, Y. Guan, and K. Y. Yuen, “Severe acute respiratory syndrome,” Nat. Med.,Vol. 10, no. 12, Dec., pp. S88–S97, 2004, doi: https://doi.org/10.1038/nm1143.
A. M. Zaki, S. van Boheemen, T. M. Bestebroer, A. D. M. E. Osterhaus, and R. A. M. Fouchier, “Isolation of a Novel Coronavirus from a Man with Pneumonia in Saudi Arabia,” N. Engl. J. Med., vol. 367, no. 19, Nov., pp. 1814–1820, 2012, doi: https://doi.org/10.1056/NEJMoa1211721.
R. Lu, “Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding,” The Lancet, Vol. 395, no. 10224, Feb., pp. 565–574, 2020, doi: https://doi.org/10.1016/S0140-6736(20)30251-8.
F. Wu, “A new coronavirus associated with human respiratory disease in China,” Nature, Vol.579, no. 7798, Mar., pp. 265–269, 2020, doi: https://doi.org/10.1038/s41586-020-2008-3.
C. B. Jackson, M. Farzan, B. Chen, and H. Choe, “Mechanisms of SARS-CoV-2 entry into cells,” Nat. Rev. Mol. Cell Biol., Vol. 23, no. 1, Jan., pp. 3–20, 2022, doi: https://doi.org/10.1038/s41580-021-00418-x.
J. Shang, “Cell entry mechanisms of SARS-CoV-2,” Proc. Natl. Acad. Sci., Vol. 117, no. 21, May., pp. 11727–11734, 2020, doi: https://doi.org/10.1073/pnas.2003138117.
L. Casalino, “Beyond Shielding: The Roles of Glycans in the SARS-CoV-2 Spike Protein,” ACS Cent. Sci., Vol. 6, no. 10, Oct., pp. 1722–1734, 2020, doi: https://doi.org/10.1021/acscentsci.0c01056.
E. Socher, L. Heger, F. Paulsen, F. Zunke, and P. Arnold, “Molecular dynamics simulations of the delta and omicron SARS-CoV-2 spike – ACE2 complexes reveal distinct changes between both variants,” Comput. Struct. Biotechnol. J., Vol. 20, Jan., pp. 1168–1176, 2022, doi: https://doi.org/10.1016/j.csbj.2022.02.015.
P. J. Delves, and I. M. Roitt, “The Immune System,” N. Engl. J. Med., Vol. 343, no. 1, Jul., pp. 37–49, 2000, doi: https://doi.org/10.1056/NEJM200007063430107.
S. Khanmohammadi, and N. Rezaei, “Role of Toll-like receptors in the pathogenesis of COVID-19,” J. Med. Virol., Vol. 93, no. 5, May., pp. 2735–2739, 2021, doi: https://doi.org/10.1002/jmv.26826.
H. E. Jung, and H. K. Lee, “Current Understanding of the Innate Control of Toll-like Receptors in Response to SARS-CoV-2 Infection,” Viruses, Vol. 13, no. 11, 2021, doi: https://doi.org/10.3390/v13112132.
N. Matsushima, “Comparative sequence analysis of leucine-rich repeats (LRRs) within vertebrate toll-like receptors,” BMC Genomics, Vol. 8, no. 1, May., pp. 124, 2007, doi: https://doi.org/10.1186/1471-2164-8-124.
O. Takeuchi, and S. Akira, “Pattern Recognition Receptors and Inflammation,” Cell, Vol. 140, no. 6, Mar., pp. 805–820, 2010, https://doi.org/doi:10.1016/j.cell.2010.01.022.
Y. Zhao, “SARS-CoV-2 spike protein interacts with and activates TLR41,” Cell Res., Vol. 31, no. 7, Jul., pp. 818–820, 2021, doi: https://doi.org/10.1038/s41422-021-00495-9.
K. Shirato, and T. Kizaki, “SARS-CoV-2 spike protein S1 subunit induces pro-inflammatory responses via toll-like receptor 4 signaling in murine and human macrophages,” Heliyon, Vol. 7, no. 2, Feb., pp. e06187, 2021, doi: https://doi.org/10.1016/j.heliyon.2021.e06187.
G. Yang, “Aptamer blocking S-TLR4 interaction selectively inhibits SARS-CoV-2 induced inflammation,” Signal Transduct. Target. Ther., Vol. 7, no. 1, Apr., pp. 120, 2022, doi: https://doi.org/10.1038/s41392-022-00968-2.
N. Matsushima, “Comparative sequence analysis of leucine-rich repeats (LRRs) within vertebrate toll-like receptors,” BMC Genomics, Vol. 8, no. 1, May., pp. 124, 2007, doi: https://doi.org/10.1186/1471-2164-8-124.
B. S. Park, D. H. Song, H. M. Kim, B.-S. Choi, H. Lee, and J.-O. Lee, “The structural basis of lipopolysaccharide recognition by the TLR4–MD-2 complex,” Nature, Vol. 458, no. 7242, Apr., pp. 1191–1195, 2009, doi: https://doi.org/10.1038/nature07830.
H. M. Kim, “Crystal Structure of the TLR4-MD-2 Complex with Bound Endotoxin Antagonist Eritoran,” Cell, Vol. 130, no. 5, Sep., pp. 906–917, 2007, doi: https://doi.org/10.1016/j.cell.2007.08.002.
D. Kaushik, R. Bhandari, and A. Kuhad, “TLR4 as a therapeutic target for respiratory and neurological complications of SARS-CoV-2,” Expert Opin. Ther. Targets, Vol. 25, no. 6, Jun., pp. 491–508, 2021, doi: https://doi.org/10.1080/14728222.2021.1918103.
S. Singh, Q. Bani Baker, and D. B. Singh, “Chapter 18 - Molecular docking and molecular dynamics simulation,” in Bioinformatics, D. B. Singh and R. K. Pathak, Eds. Academic Press, pp. 291–304, 2022. doi: https://doi.org/10.1016/B978-0-323-89775-4.00014-6.
H. Khelfaoui, D. Harkati, and B. A. Saleh, “Molecular docking, molecular dynamics simulations and reactivity, studies on approved drugs library targeting ACE2 and SARS-CoV-2 binding with ACE2,” J. Biomol. Struct. Dyn., Vol. 39, no. 18, Dec., pp. 7246–7262, 2021, doi: https://doi.org/10.1080/07391102.2020.1803967.
D. Contractor, C. Globisch, S. Swaroop, and A. Jain, “Structural basis of Omicron immune evasion: A comparative computational study,” Comput. Biol. Med., Vol. 147, Aug., pp. 105758, 2022, doi: https://doi.org/10.1016/j.compbiomed.2022.105758.
J. Petrlova, F. Samsudin, P. J. Bond, and A. Schmidtchen, “SARS-CoV-2 spike proteinaggregation is triggered by bacterial lipopolysaccharide,” FEBS Lett., Vol. 596, no. 19, Oct., pp. 2566–2575, 2022, doi: https://doi.org/10.1002/1873-3468.14490.
J. -M. Billod, A. Lacetera, J. Guzm´an-Caldentey, and S. Mart´ın-Santamar´ıa, “Computational Approaches to Toll-Like Receptor 4 Modulation,” Molecules, Vol. 21, no. 8, 2016, doi: https://doi.org/10.3390/molecules21080994.
M. A. Anwar, and S. Choi, “Structure-Activity Relationship in TLR4 Mutations: Atomistic Molecular Dynamics Simulations and Residue Interaction Network Analysis,” Sci. Rep., Vol. 7, no. 1, Mar., pp. 43807, 2017, doi: https://doi.org/10.1038/srep43807.
A. Choudhury, and S. Mukherjee, “In silico studies on the comparative characterization of the interactions of SARS-CoV-2 spike glycoprotein with ACE-2 receptor homologs and human TLRs,” J. Med. Virol., Vol. 92, no. 10, Oct., pp. 2105–2113, 2020, doi: https://doi.org/10.1038/srep43807.
H. M. Berman, “The Protein Data Bank,” Nucleic Acids Res., Vol. 28, no. 1, Jan., pp. 235–242, 2000, doi: https://doi.org/10.1093/nar/28.1.235.
T. Zhou, “Cryo-EM Structures of SARS-CoV-2 Spike without and with ACE2 Reveal a pH-Dependent Switch to Mediate Endosomal Positioning of Receptor-Binding Domains,” Cell Host Microbe, vol. 28, no. 6, Dec., pp. 867-879.e5, 2020, doi: https://doi.org/10.1016/j.chom.2020.11.004.
D. L. Wheeler, “Database resources of the National Center for Biotechnology Information,” Nucleic Acids Res., Vol. 36, no. suppl_1, Jan., pp. D13–D21, 2008, doi: https://doi.org/10.1093/nar/gkm1000.
B. Webb, and A. Sali, “Comparative Protein Structure Modeling Using MODELLER,”Curr. Protoc. Bioinforma., Vol. 54, no. 1, Jun., pp. 5.6.1-5.6.37, 2016, doi: https://doi.org/10.1002/cpbi.3.
G. C. P. van Zundert, “The HADDOCK2.2 Web Server: User-Friendly Integrative Modeling of Biomolecular Complexes,” Comput. Resour. Mol. Biol., Vol. 428, no. 4, Feb., pp. 720–725, 2016, doi: https://doi.org/10.1016/j.jmb.2015.09.014.
W. Humphrey, A. Dalke, and K. Schulten, “VMD: Visual molecular dynamics,” J. Mol. Graph., Vol. 14, no. 1, Feb., pp. 33–38, 1996, doi: https://doi.org/10.1016/0263-7855(96)00018-5.
M. J. Abraham, “GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers,” SoftwareX, Vol. 1–2, Sep., pp. 19–25, 2015, doi: https://doi.org/10.1016/j.softx.2015.06.001.
G. Cerutti, “Potent SARS-CoV-2 neutralizing antibodies directed against spike N-terminal domain target a single supersite,” Cell Host Microbe, Vol. 29, no. 5, May., pp. 819-833.e7, 2021, doi: https://doi.org/10.1016/j.chom.2021.03.005.
G. Beaudoin-Bussi`eres, “A Fc-enhanced NTD-binding non-neutralizing antibody delays virus spread and synergizes with a nAb to protect mice from lethal SARS-CoV-2 infection,” CellRep., Vol. 38, no. 7, Feb., pp. 110368, 2022, doi: https://doi.org/10.1016/j.celrep.2022.110368.
Zhou Tongqing, “Structural basis for potent antibody neutralization of SARSCoV-2 variants including B.1.1.529,” Science, vol. 0, no. 0, pp. eabn8897, doi: https://doi.org/10.1126/science.abn8897.
N. Bhattarai, P. Baral, B. S. Gerstman, and P. P. Chapagain„ “Structural and Dynamical Differences in the Spike Protein RBD in the SARS-CoV-2 Variants B.1.1.7 and B.1.351,” J. Phys. Chem. B, Vol. 125, no. 26, Jul., pp. 7101–7107, 2021, doi: https://doi.org/10.1021/acs.jpcb.1c01626.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Munkhdalai Chagdarjav, Batgerel Balt, Batsaikhan Mijiddorj
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors grant the Journal of Institute of Mathemathics and Digital Technology a license to publish the article and identify itself as the original publisher.
Articles in the Journal of Institute of Mathemathics and Digital Technology are Open Access articles published under a Creative Commons Attribution-NonCommercial 4.0 International License - CC BY NC.
This license permits NonComericial use, distribution and reproduction in any medium, provided the original work is properly cited.